81 |
Using photovoltaic effect of Hg lamp on contactless electroreflectance spectroscopy to study transition mechanism of c-plane ZnOCheng, An-hao 05 July 2011 (has links)
Photo reflectance¡]PR¡^ and Contactless electroreflectance¡]CER¡^spectra of Zn and O-faces of a c-plane ZnO bulk have been measured at room temperature, respectively. It was found that the phase of PR is the same as that of CER for the Zn-face and they are inverted for the O-face. This indicates a polarization induced field existing in the c- plane ZnO bulk due to nonzero spontaneous polarization. In addition, a mercury lamp was focused on the ZnO sample in the CER measurements to provide a photovoltaic voltage to reduce electric field in the sample. The CER spectrum with Hg lamp is more blue-shifted and its amplitude is smaller than that without Hg lamp. Hence, the type of transitions was classified as excitonic transition. The A, B, and C excitonic transition energies were obtained by fitting experimental spectra.
|
82 |
Nanotip silicon surface for anti-reflection and multiple exciton generation of semiconductor solar cellsJacobs, Sean Abraham. January 2009 (has links)
Thesis (M.S.)--University of Delaware, 2009. / Principal faculty advisor: Stephen P. Bremner, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
|
83 |
Exciton spectroscopy using non-resonant x-ray Raman scattering /Feng, Yejun, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 107-119).
|
84 |
Coherent control and decoherence of single semiconductor quantum dots in a microcavityFlagg, Edward Bradstreet, 1979- 11 September 2012 (has links)
Semiconductor quantum dots tightly confine excited electron-hole pairs, called excitons, resulting in discrete energy levels similar to those of single atoms. Transition energies in the visible or near-infrared make quantum dots suitable for many applications in quantum optics and quantum information science, but to take advantage of all the properties of quantum dot emission, it is necessary to excite them coherently which has been a great challenge due to background scattering of the excitation laser. This dissertation presents the first coherent control of a single quantum dot with observation of its resonance fluorescence and decoherence phenomena. Strong continuous-wave excitation causes the dot to undergo several Rabi oscillations before emitting. These are visible as oscillations in the first- and second-order correlation functions of the emission, and the quantum dot states are "dressed", resulting in a Mollow triplet in the emission spectrum. Some resonantly excited dots, in addition to resonance fluorescence, also emit light from excited states several meV higher in energy. Such up-conversion fits existing theories of decoherence but has never been directly observed before. The up-conversion intensity is shown to be described well by a fairly simple three-level model with single-phonon absorption. The coherent phenomena of resonance fluorescence and the decoherence due to up-conversion paint a dual picture of single quantum dots wherein they can sometimes be treated as an ideal two-level system, but their interactions with the host crystal can lead to many complex behaviors. / text
|
85 |
Exitonic condensation in bilayer systemsSu, Jung-Jung 14 September 2012 (has links)
Among the many examples of Bose condensation considered in physics, electron-hole-pair (exciton) condensation has maintained special interest because it has been difficult to realize experimentally, and because of controversy about condensate properties. In this thesis, we studied the various aspects of spontaneous symmetry broken state of exciton in bilayer using mean field theory. We calculated the photoluminescence of excitonic condensation created by laser. We developed a one-dimensional toy model of excitonic supercurrent using mean field theory plus non-equilibrium Green’s function (NEGF) which give qualitatively consistent results with experiments. We proposed graphene bilayer as a novel system for excitonic condensation to occur and estimate it to exist even at temperature as high as room temperature. / text
|
86 |
Development and Evaluation of Exchange Rate Measurement MethodsRandtke, Edward Alexander January 2013 (has links)
Exchange rate determination allows precise modeling of chemical systems, and allows one to infer properties relevant to tumor biology such as enzyme activity and pH. Current exchange rate determination methods found via Contrast Enhanced Saturation Transfer agents are not effective for fast exchanging protons and use non-linear models. A comparison of their effectiveness has not been performed. In this thesis, I compare the effectiveness of current exchange rate measurement methods. I also develop exchange rate measurement methods that are effective for fast exchanging CEST agents and use linear models instead of non-linear models. In chapter 1 I review current exchange rate measurement methods. In chapter 2 I compare several of the current methods of exchange rate measurement, along with several techniques we develop. In chapter 3 I linearize the Quantifying Exchange through Saturation Transfer (QUEST) measurement method analogously to the Omega Plot method, and compare its effectiveness to the QUEST method. In chapter 4, I compare the effectiveness of current exchange rate theories (Transition State Theory and Landau-Zener theory) in the moderate coupling regime, and propose our own combined Eyring-Landau-Zener theory for this intermediate regime. In chapter 5 I discuss future directions for method development and experiments involving exchange rate determination.
|
87 |
AN EXCITONIC APPROACH TO THE ULTRAFAST OPTICAL RESPONSE OF SEMICONDUCTOR NANO-STRUCTURESWang, Dawei 02 December 2008 (has links)
In this thesis, I present an excitonic approach to treating the coherent dynamics of optically generated charge carriers in semiconductor nanostructures. The main feature of this approach is that it includes exchange interactions and phase space filling effects, which have generally been omitted in previous excitonic treatments of coherent dynamics, so that it can go beyond the low excitation limit. In contrast to the well-known semiconductor Bloch equations, this approach treats intraband correlations without factorization. The excitonic formalism and the obtained excitonic equations are shown to be particularly advantageous in systems where bound excitons dominate the optical response and where intraband correlations play a central role.
To demonstrate the application of the excitonic approach, we simulate the coherent carrier dynamics of an optically-excited, updoped AlGaAs superlattice in the presence of a terahertz pulse, where 1s excitonic states as well as higher in-plane excited states are included. We find that gain coefficients greater than 20/cm can be achieved over a tuning range of 3-11THz and that due to the coherent cascading of the carriers down the excitonic Wannier-Stark ladder, the gain coefficients have much higher gain saturation fields than comparable two-level systems.
To investigate the effects of phase space filling and exchange interaction on exciton dynamics, we then apply the excitonic formalism to a simple model of a quantum ring as well as a realistic model of a quantum well. For the quantum ring, we have obtained numerical results regarding exciton population and interband polarization. We also compared our excitonic approach to the semiconductor Bloch equations in detail using this simple model. For the quantum well, in addition to the investigation of exciton dynamics, we propose and examine several approximations that can make our excitonic dynamic equations very efficient.
The excitonic formalism presented in this thesis is an efficient approach that can be applied in a wide range of systems, which makes it a potential alternative to the standard miconductor Bloch equations for many systems where the intraband correlations are crucial. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-12-01 18:21:17.181
|
88 |
Measurement of atomic lifetimes in Neon I and Argon I using pulsed rfTews, Daniel L. January 1973 (has links)
Atomic lifetimes of selected levels in Neon I and Argon I were measured using a method of delayed coincidence. Pulsed rf was used to excite a discharge tube containing the neon and argon gas. The radiation emitted from the excited atoms of the gas was passed through a monochromator so only the desired wavelength would be observed. Each time an excitation pulse ended, the decay of light intensity was detected by a photomultiplier tube. By measuring the decay time of the light intensity using the delayed coincidence technique, the average lifetime of the desired level was determined. The values of lifetimes determined in this study were found to contain considerable error. Several factors contributing to these errors were thought to be the shape of the rf pulses and an effort known as cascading which was caused by the use of rf for excitation of the gas.
|
89 |
Computation of exciton transfer in the one- and two-dimensional close-packed quantum dot arraysHu, Fan January 2005 (has links)
Forster theory of energy transfer is applied in diluted systems, and yet it remains unknown if it can be applied to the dense media. We have studied the exciton transfer in one-dimensional (1-D) close-packed pure and mixed quantum dot (QD) array under different models and two-dimensional (2-D) perfect lattice. Our approach is based on the master equation created by treating the exciton relaxation as a stochastic process. The random parameter has been used to describe dot-to-dot distance variations. The master equation has been investigated analytically for 1-D and 2-D perfect lattices and numerically for 1-D disordered systems. The suitability of Forster decay law on the excitation decay of close-packed solid has been discussed. The necessity to consider the effect of the further nearest interdot interactions has been checked. / Department of Physics and Astronomy
|
90 |
Electrostatic Control of Single InAs Quantum Dots Using InP NanotemplatesCheriton, Ross 24 April 2012 (has links)
This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged exciton states from over thirty single quantum dots are calculated from the spectra. The g-factor shows a generally linear dependence on dot emission energy, in agreement with previous work on this subject. A positive linear correlation between diamagnetic coefficient and g-factor is observed.
|
Page generated in 0.0423 seconds