• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 370
  • 124
  • 77
  • 74
  • 74
  • 74
  • 63
  • 61
  • 58
  • 52
  • 50
  • 49
  • 45
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wanting to hope: The experience of adult siblings of long-term missing people

Clark, J. M. Unknown Date (has links)
No description available.
12

Faucet Wet Mouth Wanting.pdf

Kelsey Wort (10732263) 30 April 2021 (has links)
Kelsey Wort's Masters thesis
13

UTILIZATION OF ADDITIVE MANUFACTURING IN THE DEVELOPMENT OF STATIONARY DIFFUSION SYSTEMS FOR AEROENGINE CENTRIFUGAL COMPRESSORS

Adam Thomas Coon (16379487) 15 June 2023 (has links)
<p> Rising costs and volatility in aviation fuel and increased regulations resulting from climate change  concerns have driven gas turbine engine manufacturers to focus on reducing fuel consumption.  Implementing centrifugal compressors as the last stage in an axial engine architecture allows for  reduced core diameters and higher fuel efficiencies. However, a centrifugal compressor's  performance relies heavily on its stationary diffusion system. Furthermore, the highly unsteady  and turbulent flow field exhibited in the diffusion system often causes CFD models to fall short of  reality. Therefore, rapid validation is required to match the speed at which engineers can simulate  different diffuser designs utilizing CFD. One avenue for this is through the use of additive  manufacturing in centrifugal compressor experimental research. This study focused on implementing a new generation of the Centrifugal Stage for Aerodynamic  Research (CSTAR) at the Purdue Compressor Research Lab that utilizes an entirely additively  manufactured diffusion system. In addition, the new configuration was used to showcase the  benefits of additive manufacturing (AM) in evaluating diffusion components. Two diffusion  systems were manufactured and assessed. The Build 2 diffusion system introduced significant  modifications to the diffusion system compared to the Build 1 design. The modifications included changes to the diffuser vane geometry, endwall divergence, and increased deswirl pinch and vane  geometries. The Build 2 diffusion system showed performance reductions in total and static  pressure rise, flow range, and efficiencies. These results were primarily attributed to the changes  made to the Build 2 diffuser. The end wall divergence resulted in end wall separation that caused  increased losses. The changes to the diffuser vane resulted in increased throat blockage and lower  pressure rise and mass flow rate. In addition to the experimental portion of this study, a computational study was conducted to study  the design changes made to the Build 2 diffusion system. A speedline at 100% corrected rotational  speed was solved, and the results were compared to experimental data. The simulated data matched  the overall stage and diffusion system performance relatively well, but the internal flow fields of  the diffusion components, namely the diffuser, were not well predicted. This was attributed to  16 using the SST turbulence model over BSL EARSM. The BSL EARSM model more accurately  predicted the diffuser flow field to the SST model.  </p>
14

Characterization of Aerodynamic and Aeroacoustic Performance of Bladeless Fans

Ang Li (7046483) 14 August 2019 (has links)
<div>Bladeless fans are well known for their unique shape and efficient performance, which have a great impact on the fan industry. At present, there are few studies on the bladeless fan and the research on the improvement of fan design is a lack. Therefore, the study on the performance of the bladeless fan with different design is the main purpose of this thesis. </div><div>In the present study, a bladeless fan prototype is created and studied by numerical simulations. When characterizing the aerodynamic and aeroacoustic performances of the bladeless fan, the entire fan prototype, including wind channel, base, rotor and stator, is adopted; when investigating the influence of the wind channel's geometric parameters, only wind channel is considered in simulations. The influence of the slit width, the height of the cross-section, the slit location and the profile of the cross-section are studied. </div><div><br></div><div>It is found that the flow outside the bladeless fan consists of the air blown out from the wind channel and entrained from the back and side of the fan. The air entrained from the side is the main source of flow rate increase. As for the aeroacoustic performance, the rotor and stator inside the base are the predominated source of the noise generated by the bladeless fan. </div><div>The performances of the bladeless fan are very sensitive to the geometric details of the wind channel. The generated noise always increases as the wind strength improves. The slit width of the wind channel has the greatest impact. With the slit moves away from the leading edge, the wind produced by the bladeless fan becomes more powerful and the noise becomes louder. The cross-sectional height of 4cm has the best aerodynamic performance but the generated noise is a little larger than other designs. The profile of the cross-section shows insignificant influence on the performances. </div>
15

Prediction of Infrasound Emission from Horizontal Axis Wind Turbines

Dazhuang He (11823935) 18 December 2021 (has links)
Wind energy is one of the fastest-growing renewable energy technologies, and horizontal axis wind turbines (HAWT) have been the most common device to convert wind kinetic energy into electrical energy. As the capacities of wind turbines and scales of wind farm constructions are rapidly increasing over time, environmental impacts of wind energy are becoming more relevant and raising more attention than ever before. One of the major environmental concerns is noise emission from wind energy facilities, especially low-frequency noise and infrasound that allegedly cause so-called wind turbine syndrome. Therefore, a numerical simulation program capable to predict low-frequency noise and infrasound emission from wind turbines is a useful tool to aid future wind energy development. In this study of this thesis, a computer program named TDRIP (Time Domain Rotor Infrasound Prediction) is developed based on acoustic analogy theories. Farassat’s formulation 1A, a solution to Ffowcs Williams-Hawkings (FW-H) equation, is implemented in the TDRIP program to compute aerodynamically generated sound. The advantage of this program is its capability to simultaneously compute infrasound emission of multiple wind turbines in time domain, which is a challenging task for other aerodynamic noise prediction methods. The developed program is validated against results obtained from computational fluid dynamics (CFD) simulations. The program is then used to compute aerodynamic noise emitted from wind turbine rotors. The effects of wind direction, wind turbine siting, and phase of wind turbine rotation on consequent aerodynamic noise are investigated. Results of aerodynamic noise computation imply that wind turbine siting configuration or wind turbine phase adjustment can help reducing noise level at certain locations, which make the program ideal to be integrated into wind farm siting or control tools.
16

Impact Fragmentation

Sean Evan Wiggins (13949157) 13 October 2022 (has links)
<p>While hypervelocity impacts are ubiquitous throughout the solar system and have received decades  of  research,  the dynamic  fragmentation that  occurs  during an impact has received relatively little attention. This is made more troublesome by the fact that, by volume, more material in the target is altered by the tensile stresses of the rarefaction wave that relieves the pressure of the shock wave, compared to the amount excavated by the impact itself. This tensionally affected material  can  include  Grady-Kippfragments,  fragments  of  material  that  were  broken  apart according to a dynamic fragmentation model developed by Grady and Kipp in 1980. By using their model and inserting it into the Eulerian hydrocode iSALE, we have been able to examine the role tensile stressesand dynamic fragmentation play in hypervelocity impacts. We started by finding the limits on Grady-Kipp fragmentation on an already well studied surface, the Moon. We found that fragment sizes are weakly dependent on impactor size and impact velocity. For impactors 1 km in diameter or smaller, a hemispherical zone centered on the point of impact contains meter‐scale fragments. For an impactor 1 km in diameter this zone extends to depths of 20 km. At larger impactor  sizes,  overburden  pressure  inhibits  fragmentation  and  only  a  near‐surface  zone  is fragmented. For a 10‐km‐diameter impactor, this surface zone extends to a depthof ~20 km and lateral distances ~300 km from the point of impact. This suggests that impactors from 1 to 10 km in diameter can efficiently fragment the entire lunar crust to depths of ~20 km, implying that much of the modern day megaregolith can be created by single impacts rather than by multiple large impact events.</p> <p>With the extent of in-situ fragmentation examined we turned ourattention to getting our dynamic fragmentation code to run smoothly with iSALE’s PorTens. PorTens is a change made to iSALE to allow for pore space creation in material undergoing tensile stresses and pressures in order to keep thermodynamic consistency. Importantly, wefound that when the two routines are combined, porosity increases substantially, and that the large basins currently observed on the Moon’s surface are likely most responsible for the high porosity detected by the Gravity Recovery and Interior Laboratory (GRAIL) mission. Additionally, we discovered that deep lying porosity seems to be additive, suggesting that even without the influence of the largest impactors it is possible for porosity to increase over time. The final, and possibly most consequential conclusion from this work is the ability of tensile stresses and pressures can create potential sitesof refugia for early life that may have existed on early Earth or possibly Mars.</p> <p>Our final dive into hypervelocity impacts focuses on modeling fragments of ejecta. To study this, we have restructured the original fragmentation code substantially. Because most of the damage occurring in the ejecta is done in shear, our previously used Grady-Kipp implementation is not able to provide any useful data, without first making some necessary changes. Much of shear stresses occurring during the passage of a shockwave is accommodated by ductile deformation. Thus, we allow tensile damage to accumulate independently of any calculated shear damage. This simple assumption allows us to track fragment size within ejecta curtains.We then present the results of fragment size vs velocity for different sized impactors.</p> <p><br></p>
17

Movement skills proficiency and physical activity in 6 to 12 year old children: A case for Engaging and Coaching for Health (EACH)-Child

Ziviani, J., Poulsen, A., Hansen, Carla Unknown Date (has links)
No description available.
18

EXPERIMENTAL AND MODELLING STUDY OF CO2 GASIFICATION OF CORN STOVER CHAR USING CATALYST

Rathziel Roncancio Reyes (12449028) 23 April 2022 (has links)
<p>CO<sub>2</sub> concentration in the atmosphere poses a great threat to life on earth as we know it. The reduction of CO<sub>2</sub> concentration is key to avoid the critical turning point of 1.5<sup>o</sup>C temperature increase highlighted by Intergovernmental Panel on Climate Change (IPCC). Gasification using CO<sub>2</sub> as reacting agent can potentially reduce the CO<sub>2</sub> concentration in the atmosphere. Naturally, biomass such as corn, uses great amounts of CO<sub>2</sub> for photosynthesis and produces O<sub>2</sub>; hence, energy and fuel production using biomass can potentially be classified as carbon neutral. Moreover, if CO<sub>2</sub> is used as the gasifying agent, gasification can effectively be carbon-negative and collaborate to the reduction of CO2 in the atmosphere.</p> <p>The major setback of using CO<sub>2</sub> biomass gasification is the energy-intensive reaction between C + CO<sub>2</sub> -> 2CO. This reaction at atmospheric pressure and room temperature is heavily tilted towards producing char and CO2. The current investigation describes efforts to favor the right hand side of the reaction by using simple impregnation techniques and cost-effective catalysts to reduce the energy requirements of the reaction. Also, parameters such as pressure are explored to tilt the balance towards the production of CO. Corn stover is selected as the biomass for the present research due to its wide use and availability in the US.</p> <p>The results show that by using catalysts such as iron nitrate and sodium aluminate, the temperature required to achieve substantial char conversion is reduced. Also, increasing the pressure of the reactor, the temperature can be substantially decreased by 100 K and 150 K. The structure and chemical composition of the chars is studied to explain the differences in the reaction rate between chars. Further, chemical kinetics are calculated to compare the present work with previous work in the literature. Finally, data-driven analysis of the gasification data is explored. The appendices provide supplementary information on the application of deep learning to CO<sub>2</sub> recycling using turbulent flames and efforts to reduce the flame spread rate over a pool of Jet A by using Multi Walled Carbon Nanotubes (MWCNTS).</p>
19

Quasi-Two-Dimensional Halide Perovskite Materials For Photovoltaic Applications

Aidan Coffey (12481935) 29 April 2023 (has links)
<p>As energy demands for the world increase, the necessity for alternate sources of energy are critical. Just in the United States alone, 92 quadrillion British thermal units (Btu) were used in 2020. As political and geographical pressures surrounding oil increase, along with the growing concern for climate, the drive to explore alternative and renewable means for harvesting energy is on the rise. Solar cells, also known as photovoltaics (PVs), are an attractive renewable source and have been developed as an alternative energy means for over 60 years. When considering losses due to atmospheric absorption and scattering, the Earth’s surface gets about 1000 W/m2 of energy from the sun, which is why there are research efforts around the world trying to maximize the efficiency of solar cells.</p> <p>Organic-inorganic halide perovskites provide for ideal absorbing layers that feature long carrier lifetime and diffusion lengths, strong photoluminescence, and promising tunability. Furthermore, the solution-processing methods used to make these perovskites ensure that the solar cells will remain low-cost and have easy scale-up possibilities. The main problem perovskites is that they degrade in the presence of water, thus leading to decreased device performance.</p> <p>In this work two approaches are investigated to increase moisture stability. The first investigates incorporation of thiols as pseudohalides into the 2D perovskite structure. Instead of the theorized perovskite, two novel 2D compounds were created, Pb<sub>2</sub>X(S-C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (X= I, Br, Cl) and PbI<sub>1.524</sub>(S-C<sub>6</sub>H<sub>5</sub>)<sub>0.476</sub>. While not perovskites, this study gives insight into the effect that the thiol may have on determining structure when comparing –S-C<sub>6</sub>H<sub>5</sub> with –SCN groups. Future work will explore more electronegative thiols that will be used to make moisture resistant, tunable 2D perovskites.</p> <p>The second approach is to incorporate longer organic ammonium cations into the perovskite structure to produce quasi-2D perovskite films fabricate them into devices. Adding in electronically insulating ligands leads to a stricter requirement for vertically aligned 2D films and special care must be taken to have efficient charge collection. The current field has successfully incorporated short ligands such as butylammonium (BA) into PVs, however the extension to larger and more beneficially hydrophobic ligands has been very scarce. In this work, a novel solvent engineering system is developed to create vertically aligned quasi-2D perovskite absorbing layers based off of a bithiophene ligand (2T). These absorbing layers are then characterized and incorporated into efficient PV devices. Generalizations to solvent conditions related to ligand choice is discussed herein, creating deep insights into incorporating more conjugated ligands into devices.</p>
20

Characterization of The Flow Quality in the Boeing Subsonic Wind Tunnel

Claire S Diffey (7038167) 02 August 2019 (has links)
<div>Good wind-tunnel flow quality characteristics are vital to using test data in the aerodynamic design process. Spatially uniform velocity profiles are required to avoid yaw and roll moments that would not be present in real flight conditions. Low turbulence intensity levels are also important as several aerodynamic properties are functions of turbulence intensity. When measuring mean flow and turbulence properties, hot-wire anemometry offers good spatial resolution and high-frequency response with a fairly simple operation, and the ability to make near-wall measurements. Using hot-wire anemometry, flow quality experiments were conducted</div><div>in a closed-circuit wind tunnel with a test section that has a cross section area of 1.2 m x 1.8 m (4 ft. x 6 ft.). The experiments included measurements of flow velocity and turbulence intensity variation over the test section cross-section, spatial and temporal temperature variation, and</div><div>boundary layer measurements. The centerline velocity and turbulence intensity were also measured for flow speeds ranging from 13 to 43 m/s.</div>

Page generated in 0.077 seconds