• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction

Quedan, Duaa Mohamad Alhaj Mahmoud 07 1900 (has links)
The anti-S2 peptides, the stabilizer and destabilizer, were designed to target myosin sub-fragment 2 (S2) in muscle. When the peptides are coupled to a heart-targeting molecule, they can reach the cardiomyocytes and interfere with cardiac muscle contraction. Monoclonal antibodies, MF20 and MF30, are also known to interact with light meromyosin and S2 respectively. The MF30 antibody compared to anti-S2 peptides and the MF20 antibody is used as a control to test the central hypothesis that: Both the anti-S2 peptides and antibodies bind to myosin S2 with high affinity, compete with MyBPC, and possibly interact with titin, in which case the anti-S2 peptides have further impact on myosin helicity and reach the heart with the aid of tannic acid to modulate cardiomyocytes' contraction in live mice. In this research, the effects of anti-S2 peptides and antibodies on myosin S2 were studied at the molecular and tissue levels. The anti-myosin binding mechanism to whole myosin was determined based on total internal reflectance fluorescence spectroscopy (TIRFS), and a modified cuvette was utilized to accommodate this experiment. The binding graphs indicated the cooperative binding of the peptides and antibodies with high affinity to myosin. Anti-myosin peptides and antibodies competition with Myosin Binding Protein C (MyBPC) was revealed through the super-resolution expansion microscopy using wildtype skeletal and cardiac myofibrils, and MyBPC knock-out cardiac myofibril. This new emerging technique depends on using the regular confocal microscope in imaging expanded myofibril after embedding in a swellable hydrogel polymer and digestion. A decrease in the fluorescent intensity at the C-zone was observed in myofibrils labeled with fluorescently labeled anti-S2 peptides or antibodies supporting the competition with MyBPC, which further was confirmed by the absence of this reduction at the C-zone in the knockout MyBPC cardiac tissue. The anti-S2 peptide's ability to reach inside the cardiomyocytes was tested by injecting fluorescently labeled anti-S2 peptides bound to tannic acid in live mice, the destabilizer peptide reached the heart 6X more than the stabilizer peptide. Some of the peptides labeled cardiac arterioles and T-tubules as detected by super-resolution microscopic images, meanwhile some peptides reached inside the cardiomyocytes and labeled some sarcomeres. This dissertation demonstrates the ability of anti-S2 peptides and antibodies in modifying myosin as they bind cooperatively with high affinity to myosin and compete with the regulatory protein MyBPC, in addition to the possible interaction between the stabilizer peptide and titin. Lastly, the peptides succeeded in labeling some cardiac sarcomeres in live mice.
2

Application of Biomimetic Membrane Models in Expansion Microscopy / Tillämpning av biomimetiska membranmodeller i expansionsmikroskopi

Thiagarajan, Praghadhesh January 2023 (has links)
Plasmamembranet är en komplex struktur som består av biomolekyler som lipider, proteiner och glykaner. Membranets rena komplexitet begränsar vår förmåga att förstå den spatiotemporala dynamiken hos sådana komponenter och deras kollektiva biofysiska membranparametrar. En sådan parameter som är svår att studera är asymmetri mellan lagren. Celler investerar mycket energi i den ojämna fördelningen av lipider mellan de inre och yttre lagren under olika cellulära händelser. Kunskapen om sådana parametrar kan vara av stor betydelse för förståelsen av cellers biologi och för att utveckla läkemedel och vacciner. Plasmamembranets tjocklek på 4-6 nm är en stor begränsande faktor eftersom det blir svårt att särskilja skillnaden mellan cytosoliska och exoplasmatiska signaler i plasmamembranet med fluorescent konfokalmikroskopi och superupplösande mikroskopi. I det här projektet använde jag MAP-expansionsmikroskopiprotokollet för att fysiskt öka avståndet mellan cytosoliska och exoplasmatiska lager, tillsammans med tvåfärgsmärkning av båda dessa strukturer för att förbättra deras visualisering. Biomimetiska cellmembranmodeller som Giant Plasma Membrane Vesicles (GPMVs), användes för att identifiera lämpliga märkningsstrategier. Klickkemibaserad märkningsstrategi valdes för exoplasmatisk märkning av lager och fluorescerande proteinbaserad märkning valdes för cytosolisk märkning av lager. GPMV-modellen användes för att identifiera de membranproteiner som specifikt aggregerar i de vätskestörda regionerna av membranet. MAP-expansionsprotokoll, när det utfördes på både celler och GPMV: er, visade att celler var mer tillförlitliga för expansion eftersom närvaron av cytoskeletts fysikalisk-mekaniska egenskaper som hjälper till med deras deformation. Expansionsfaktorn för MAP-protokollet beräknades till 3,3 med användning av kärnexpansion och en isotrop expansion observerades i densamma. Med denna expansionsfaktor och mer rödfärgsbaserade märkningsstrategier, antar jag att det skulle vara möjligt att visualisera asymmetrin mellan broschyrerna med hjälp av Superupplösande stimulerad emission utarmningsmikroskopi. / The plasma membrane is a complex structure comprised of biomolecules such as lipids, proteins, and glycans. The sheer complexity of the membrane limits our ability to understand the spatiotemporal dynamics of its components and their collective biophysical membrane parameters. One such parameter that is difficult to study is inter-leaflet asymmetry. Cells invest a lot of energy in the inhomogeneous distribution of lipids between the inner and outer leaflets during different cellular events. The knowledge of this parameter could be of great importance for understanding the membrane biology of cells and for designing drugs and vaccines. The 4-6nm thickness of the plasma membrane is a major limiting factor since it becomes difficult to distinguish the difference between the cytosolic and exoplasmic plasma membrane leaflet signals with fluorescence confocal and super-resolution microscopy. In this project, I employed the MAP expansion microscopy protocol to physically increase the distance between the cytosolic and the exoplasmic leaflets, coupled with two-colour labelling of both these structures to improve their visualization. Biomimetic cell membrane models like the Giant Plasma Membrane Vesicles (GPMVs), were used for identifying suitable labelling strategies. Click chemistry-based labelling strategy was chosen for exoplasmic leaflet labelling and fluorescent protein-based labelling was chosen for cytosolic leaflet labelling. The GPMV model was used to identify that the membrane proteins specifically aggregate in the liquid-disordered regions of the membrane. MAP expansion protocol, when performed on both cells and GPMVs, revealed cells to be more reliable for expansion, since the presence of cytoskeleton conferred physicomechanical properties to cells, aiding in their deformation. The expansion factor of the MAP protocol was calculated to be 3.3 using nuclear expansion and an isotropic expansion was observed in the same. With this expansion factor and more red dye-based labelling strategies, I hypothesize that it would be possible to visualize the inter-leaflet asymmetry using super-resolution Stimulated Emission Depletion microscopy.

Page generated in 0.11 seconds