• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 9
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 78
  • 37
  • 32
  • 28
  • 26
  • 25
  • 19
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Intermolecular energy scales based on aromatic ethers and alcohols

Poblotzki, Anja 20 March 2019 (has links)
No description available.
102

The Generalized Operator Based Prony Method

Stampfer, Kilian 17 January 2019 (has links)
No description available.
103

Multiple time scale approach to heirarchical aggregation of linear systems and finite state Markov processes

Coderch i Collell, Marcel January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 328-332. / by Marcel Coderch i Collell. / Ph.D.
104

Particle Trajectories in Wall-Normal and Tangential Rocket Chambers

Katta, Ajay 01 August 2011 (has links)
The focus of this study is the prediction of trajectories of solid particles injected into either a cylindrically- shaped solid rocket motor (SRM) or a bidirectional vortex chamber (BV). The Lagrangian particle trajectory is assumed to be governed by drag, virtual mass, Magnus, Saffman lift, and gravity forces in a Stokes flow regime. For the conditions in a solid rocket motor, it is determined that either the drag or gravity forces will dominate depending on whether the sidewall injection velocity is high (drag) or low (gravity). Using a one-way coupling paradigm in a solid rocket motor, the effects of particle size, sidewall injection velocity, and particle-to-gas density ratio are examined. The particle size and sidewall injection velocity are found to have a greater impact on particle trajectories than the density ratio. Similarly, for conditions associated with a bidirectional vortex engine, it is determined that the drag force dominates. Using a one-way particle tracking Lagrangian model, the effects of particle size, geometric inlet parameter, particle-to-gas density ratio, and initial particle velocity are examined. All but the initial particle velocity are found to have a significant impact on particle trajectories. The proposed models can assist in reducing slag retention and identifying fuel injection configurations that will ensure proper confinement of combusting droplets to the inner vortex in solid rocket motors and bidirectional vortex engines, respectively.
105

Small-time asymptotics and expansions of option prices under Levy-based models

Gong, Ruoting 12 June 2012 (has links)
This thesis is concerned with the small-time asymptotics and expansions of call option prices, when the log-return processes of the underlying stock prices follow several Levy-based models. To be specific, we derive the time-to-maturity asymptotic behavior for both at-the-money (ATM), out-of-the-money (OTM) and in-the-money (ITM) call-option prices under several jump-diffusion models and stochastic volatility models with Levy jumps. In the OTM and ITM cases, we consider a general stochastic volatility model with independent Levy jumps, while in the ATM case, we consider the pure-jump CGMY model with or without an independent Brownian component. An accurate modeling of the option market and asset prices requires a mixture of a continuous diffusive component and a jump component. In this thesis, we first model the log-return process of a risk asset with a jump diffusion model by combining a stochastic volatility model with an independent pure-jump Levy process. By assuming smoothness conditions on the Levy density away from the origin and a small-time large deviation principle on the stochastic volatility model, we derive the small-time expansions, of arbitrary polynomial order, in time-t, for the tail distribution of the log-return process, and for the call-option price which is not at-the-money. Moreover, our approach allows for a unified treatment of more general payoff functions. As a consequence of our tail expansions, the polynomial expansion in t of the transition density is also obtained under mild conditions. The asymptotic behavior of the ATM call-option prices is more complicated to obtain, and, in general, is given by fractional powers of t, which depends on different choices of the underlying log-return models. Here, we focus on the CGMY model, one of the most popular tempered stable models used in financial modeling. A novel second-order approximation for ATM option prices under the pure-jump CGMY Levy model is derived, and then extended to a model with an additional independent Brownian component. The third-order asymptotic behavior of the ATM option prices as well as the asymptotic behavior of the corresponding Black-Scholes implied volatilities are also addressed.
106

Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise

Starkloff, Hans-Jörg, Wunderlich, Ralf 07 October 2005 (has links) (PDF)
The paper considers systems of linear first-order ODEs with a randomly perturbed system matrix and stationary additive noise. For the description of the long-term behavior of such systems it is necessary to study their stationary solutions. We deal with conditions for the existence of stationary solutions as well as with their representations and the computation of their moment functions. Assuming small perturbations of the system matrix we apply perturbation techniques to find series representations of the stationary solutions and give asymptotic expansions for their first- and second-order moment functions. We illustrate the findings with a numerical example of a scalar ODE, for which the moment functions of the stationary solution still can be computed explicitly. This allows the assessment of the goodness of the approximations found from the derived asymptotic expansions.
107

The Level of Noise Controls the Efficiency of Natural Selection in Growing Biofilms

Stiewe, Fabian 11 December 2014 (has links)
No description available.
108

Study Of Thermal Expansion Anisotropy In Extruded Cordierite Honeycombs

Madhusoodana, C D 07 1900 (has links) (PDF)
No description available.
109

Asymptotic Expansions for Second-Order Moments of Integral Functionals of Weakly Correlated Random Functions

Scheidt, Jrgen vom, Starkloff, Hans-Jrg, Wunderlich, Ralf 30 October 1998 (has links)
In the paper asymptotic expansions for second-order moments of integral functionals of a class of random functions are considered. The random functions are assumed to be $\epsilon$-correlated, i.e. the values are not correlated excluding a $\epsilon$-neighbourhood of each point. The asymptotic expansions are derived for $\epsilon \to 0$. With the help of a special weak assumption there are found easier expansions as in the case of general weakly correlated functions.
110

Correlation of Damage Rating Index in Concrete Pavements

Qutail, Ali 06 May 2021 (has links)
No description available.

Page generated in 0.0928 seconds