• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Placentation in the Mexican Lizard Sceloporus mucronatus (Squamata: Phrynosomatidae)

Villagrán, Maricela, Méndez, Fausto R., Stewart, James R. 01 June 2005 (has links)
We used light microscopy to study placental structure of the lizard Sceloporus mucronatus throughout 6 months of embryonic development. Three stages of placental development could be assigned to embryos based on the arrangement of the extraembryonic membranes. A highly vascular choriovitelline placenta was present in the embryonic hemisphere and a nonvascular bilaminar omphalopleure covered most of the abembryonic hemisphere of the egg during embryonic Stages 10-28. A chorioallantoic placenta replaced the choriovitelline placenta by embryonic Stage 29 and an omphaloplacenta covered the abembryonic hemisphere at this stage. The combination of these two placental types occurred in Stage 29-36 embryos. The final stage of placentation, embryonic Stages 37-40, was characterized by an omphalallantoic placenta in the abembryonic hemisphere and a chorioallantoic placenta in the embryonic hemisphere of the egg. The choriovitelline and chorioallantoic placentae are well vascularized, with closely apposed maternal and embryonic blood vessels. These structures are the most likely sites of respiratory exchange. In contrast, the omphaloplacenta and omphalallantoic placentae contain cuboidal or columnar epithelia and these structures may function in histotrophic exchange. Placentation of S. mucronatus is similar to that of predominantly lecithotrophic species in other squamate lineages suggesting that the evolution of this placental morphology is a response to similar factors and is independent of phylogeny.
2

Caracterização do desenvolvimento e da hematopoese embrionária da serpente falsa-coral Oxyrhopus guibei (Serpentes: Dipsadidae) a partir da oviposição / Characterization of embryonic development and hematopoiesis of false coral snake Oxyrhopus guibei (Serpentes: Dipsadidae) pos-oviposition

Cavlac, Carolina Limonge 15 October 2009 (has links)
Descrições morfológicas são os primeiros passos para compreender a fisiologia dos organismos e seus sistemas. A biologia do desenvolvimento e a ontogenia da hematopoese de serpentes são pouco conhecidas, sendo a hematopoese embrionária inteiramente desconhecida. Os principais objetivos deste trabalho foram caracterizar o desenvolvimento e a hematopoese embrionária da serpente falsa-coral Oxyrhopus guibei (Dipsadidae: Xenodontinae) a partir da oviposição, através da análise de caracteres morfológicos externos para a classificação dos estágios de desenvolvimento embrionário, de 30 embriões com 1-3, 15, 25, 30, 45, 65 e ~75 dias de ovipostura (d.o.) (quando eclodem), e de cortes histológicos de 29 ovos (ou embriões) de 1-3, 15, 25, 30, 45, 60d.o. e de filhotes do dia da eclosão e com uma semana de nascimento para a caracterização da hematopoese embrionária. Os embriões de 1-3d.o. foram classificados entre os estágios (st.) 17 e 23, com ausência da formação ocular até a presença de olhos sem pigmentação; de 15d.o. no st. 26, com olhos pigmentados e ductos endolinfáticos calcificados; de 25d.o. no st. 31, com escamas no corpo não pigmentado e a musculatura dos flancos não fusionada na linha mediana ventral; de 30d.o. entre os st. 31 e 33, que em adição à formação descrita no período anterior, apresentam membrana palpebral completa e musculatura fusionadas na linha mediana ventral na região pré-cardíaca; de 45d.o. entre os st.34 e 36, com musculatura completamente fusionada na linha mediana ventral e começando a desenvolver um padrão de pigmentação; de 65d.o. no st. 37 (último da tabela) com o padrão de pigmentação bem desenvolvido de coral em tríades, típico da espécie, e com o dente do ovo, e com ~75d.o. os ovos eclodiram com filhotes sadios, que apresentam cicatriz umbilical e o dente do ovo permanece presente até dois dias após a eclosão. A hematopoese em ovos de 1-3 e 15d.o. foi caracterizadas como hematopoese extraembrionária, ocorrendo nos vasos das membranas extraembrionárias e na fenda vitelínica, e hematopoese intraembrionária, na região AGM (aorta gonadal mesonéfrons), principalmente no interior da artéria aorta dorsal, que continua como local hematopoético embrionário até no período de 30d.o., porém com estruturas mais diferenciadas; com 45d.o. o principal local hematopoético passa a ser medula óssea, com foco hematopoético de multi-linhagem sanguínea a partir de 60d.o., nos seios vertebrais e medula costal, constituindo o local hematopoético definitivo. Foi observada a atividade hematopoética junto ao tecido renal, com o desenvolvimento da região AGM, entre os períodos de 15 a 30d.o., o timo e baço apresentam diferenciação linfocítica, observados a partir de 30 e 45d.o., respectivamente e o fígado não apresenta hematopoese embrionária. Esta é a primeira descrição do desenvolvimento embrionário de uma serpente Caenophidia ovípara e da hematopoese embrionária de Serpentes, contribuindo para o conhecimento da fisilogia destes processos e indicando a necessidade de estudos tanto para um melhor entendimento do desenvolvimento embrionário, quanto para a compreensão da ontogenia da hematopoese das serpentes. / Morphological descriptions are the first steps to understand the physiology of organisms and their systems. Developmental biology and ontogeny of hematopoiesis of snakes are poorly known, and the embryonic hematopoiesis is completely unknown. The main goals of this study were to characterize the embryonic and hematopoiesis development of the false coral snake Oxyrhopus guibei (Dipsadidae: Xenodontinae) since oviposition. Analysis of external morphological characters regarding the classification developmental stages for developmental stages classification has been made for 30 embryos with 1 -3, 15, 25, 30, 45, 65 and ~ 75 days after oviposition days (o.d.) (when hatched), and histological sections of 29 eggs (or embryos) from 1-3, 15, 25, 30, 45, 60o.d. and one day neonates and one week after birth for the characterization of embryonic hematopoiesis. The embryos with 1-3o.d. were ranked between 17 and 23 stages (st.), with the absence of eye formation to the presence of unpigmented eyes; with 15o.d. in 26 st., with pigmented eyes and calcified endolymphatic duct; with 25o.d. in 31 st., with unpigmented body scales and muscles of the flanks not fused in the midline, with 30o.d. between 31 and 33 st., which in addition to the preceeding form, have full eyelid membrane and muscles fused at midline in the pre-cardiac region; with 45d.o. between 34 and 36 st., with muscles completely fused in the midline and beginning the development of pigmentation pattern, with 65o.d. in 37 st. (last stage of table) with the distinctive pigmentation tricolor-triad pattern , and the egg tooth, and ~ 75 d.o. health newborns have hatched, exhibiting the umbilical scar and the egg tooth up to two days after hatching. The hematopoiesis in eggs of 1-3 and 15o.d. was characterized as extraembryonic hematopoiesis, occurring in the vessels of extraembryonic membranes and in yolk clef, and intraembryonic hematopoiesis, in the AGM (gonad mesonefron aorta), mainly within the dorsal aorta, which continues as the embryonic hematopoietic site until the 30o.d., although with better differentiated structures; wth 45o.d. the bone marrow turns the main hematopoietic site, and with a hematopoietic focus of multi-lineage blood beginning in the 60d.o. at vertebral sinus and the ribs marrow, consisting the definitive hematopoietic sites. Hematopoietic activity was observed with the kidney tissue, through development of the AGM region, between the periods of 15 to 30d.o., thymus and spleen lymphocyte differentiation have been observed at 30 . and 45o.d., respectively, and the liver does not displays embryonic hematopoiesis. This is the first description of embryonic development of an oviparous Caenophidia snake and of the embryonic hematopoiesis in Serpentes, contributing to the knowledge the physiology of these processes and demonstrating the need of further studies for a better understanding of both embryonic development and the ontogeny snake.
3

Morphogenesis of the early post-implantation mouse embryo

Kyprianou, Christos January 2019 (has links)
The morphogenetic events that give rise to the early post-implantation mouse embryo (egg cylinder) have not been thoroughly studied and our knowledge is restricted to "snap-shot" descriptions of embryos recovered at different stages of implantation from the mother. A central feature of the egg cylinder is the pro-amniotic cavity, which spans the embryo and participates in formation of the extraembryonic membranes. The major aims of my PhD studies have been to reveal how this cavity is formed (Aim 1) and then how the egg cylinder grows (Aim 2). In order to address how the pro-amniotic cavity forms (Aim 1), I first characterised in detail development of the architecture of the extra-embryonic ectoderm (ExE), which has to be remodelled to permit cavity formation. My findings indicate that the ExE comprises cells in direct contact with a basement membrane and cells that lie deeper in the tissue. The ExE originates in the polar trophectoderm, a monolayer covering the epiblast of the blastocyst, which expands and undergoes invagination to form a slit-like cavity. By carrying out analyses of fixed specimens and live imaging of cultured embryos, I have found that the epiblast and ExE cavity extend towards each other through the formation and resolution of multiple rosette structures. This leads to the fusion of the ExE and epiblast cavities to form the unified pro-amniotic cavity. I show that this process is dependent on signalling cues stemming from the underlying basement membrane that activate the b1-integrin signalling pathway to regulate cell polarity, ExE tissue architecture and rosette formation. In addition to the basement membrane's role in b1-integrin signalling, it also has physical functions that I characterise in the second part of my study (Aim 2). High resolution imaging revealed that the basement membrane underlying the epiblast is highly perforated during the implantation stages. These perforations are initially evenly distributed and then accumulate asymmetrically at the future posterior part of the embryo, just prior to gastrulation. Finally, I demonstrate that remodelling of the basement membrane requires the expression of matrix metalloproteinases (MMPs) in the epiblast under the control of Nodal. The anterior visceral endoderm inhibits Nodal signalling and hence MMP inhibition in the anterior. I demonstrate that activity of the MMPs and perforations in the basement membrane are essential for embryo growth. The domain of posterior basement membrane perforations persists beyond gastrulation suggesting a potential role for these perforations in primitive streak formation and extension. Together, my studies bring new important insights into the understanding of early mouse embryo morphogenesis.
4

Differentiation of extraembryonic endoderm stem cell lines and parietal endoderm into visceral endoderm : the art of XEN cells

Paca, Agnieszka Maria January 2012 (has links)
The extraembryonic endoderm of mammals is essential for nutritive support of the foetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimaeras. Here, I further characterise XEN cells and show that these cell lines exhibit high levels of heterogeneity. In an effort for XEN cells to adopt visceral endoderm character different aspects of the in vivo environment were mimicked. I found that BMP4 and laminin promote a mesenchymal-to-epithelial transition of XEN cells with upregulation of epithelial markers and downregulation of mesenchymal markers. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm. Correspondingly, inhibition of Erk and BMP signalling drives XEN cells toward parietal endoderm fate. Finally, I show that BMP4 treatment of freshly isolated parietal endoderm from Reichert’s membrane promotes its visceral endoderm differentiation. This suggests that parietal endoderm is still developmentally plastic and can be transdifferentiated to a visceral endoderm in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.
5

Rôle de Dkk1 et Noggin pendant la différenciation de l'endoderme extraembryonnaire au cours du développement murin

Gasnier, Maxime 30 January 2014 (has links)
A 3,5 jours de développement (E3.5), l'embryon de souris est composé d'une couche externe de trophectoderme (TE) entourant la cavité blastocélique et la masse cellulaire interne (MCI). La MCI comprend une population hétérogène de précurseurs d'épiblaste (Epi) et d'endoderme primitif (EPr) dans une configuration "poivre et sel". A E4.5, ces cellules ségrégent, les cellules d'EPr migrant vers la surface de la MCI pour former un épithélium. A E4.75 cet épithélium donne naissance à 2 tissus distincts : un épithélium d'endoderme viscéral (EP) et à l'endoderme pariétal (EP) qui migre le long du TE. Une transition épithélium-mésenchyme est impliquée dans la formation de l'EP. Je m'intéresse au rôle de Dkk1, un inhibiteur de la voie Wnt canonique et activateur de la voie Wnt/PCP, et Noggin, un inhibiteur des BMP, dans la différenciation de l'endoderme extraembryonnaire. J'ai montré que Dkk1 est un marqueur de l'EPr qui devient apicalement polarisé à E4.5. Son expression est ensuite restreinte aux cellules de l'EP. J'ai aussi montré que Noggin est exprimé dès la préimplantation puis dans l'EP et au niveau de la charnière EV-Ep. Par des expériences de perte et de gain de fonction des voies Wnt et BMP et en utilisant les souris mutantes j'ai analysé le rôle de ces deux facteurs dans la différenciation de l'endoderme extraembryonnaire. / At 3.5 days of development (E3.5), the mouse embryo consists of an outer layer of trophectoderm (TE) surrounding the blastocelic cavity and the inner cell mass (ICM). The ICM is composed of intermingled populations of epiblast (Epi) and primitive endoderm (PrE) precursors, that sort to form two distinct tissues. At E4.75 this epithelium differentiates into visceral endoderm (VE) and parietal endoderm (PE) that migrates along TE. An epithelium-mesenchyme transition (EMT) is involved in PE formation while the VE is maintained as an epithelium. My work focuses on the role of Dkk1, a Wnt canonical pathway inhibitor and Wnt/PCP pathway activator, and Noggin, a BMP pathway inhibitor, in extraembryonic endoderm differentiation. I have shown that Dkk1 is a marker of PrE precursors and is apically polarised at E4.5. Afterwards, its expression is restricted to PE. Noggin is expressed during preimplantation and then in PE and EV-EP hinge. By gain and loss of fonction experiments of Wnt and BMP pathways and by using mutant mice, I studied the role of these two factors in extraembryonic endoderm differentiation.
6

Caracterização do desenvolvimento e da hematopoese embrionária da serpente falsa-coral Oxyrhopus guibei (Serpentes: Dipsadidae) a partir da oviposição / Characterization of embryonic development and hematopoiesis of false coral snake Oxyrhopus guibei (Serpentes: Dipsadidae) pos-oviposition

Carolina Limonge Cavlac 15 October 2009 (has links)
Descrições morfológicas são os primeiros passos para compreender a fisiologia dos organismos e seus sistemas. A biologia do desenvolvimento e a ontogenia da hematopoese de serpentes são pouco conhecidas, sendo a hematopoese embrionária inteiramente desconhecida. Os principais objetivos deste trabalho foram caracterizar o desenvolvimento e a hematopoese embrionária da serpente falsa-coral Oxyrhopus guibei (Dipsadidae: Xenodontinae) a partir da oviposição, através da análise de caracteres morfológicos externos para a classificação dos estágios de desenvolvimento embrionário, de 30 embriões com 1-3, 15, 25, 30, 45, 65 e ~75 dias de ovipostura (d.o.) (quando eclodem), e de cortes histológicos de 29 ovos (ou embriões) de 1-3, 15, 25, 30, 45, 60d.o. e de filhotes do dia da eclosão e com uma semana de nascimento para a caracterização da hematopoese embrionária. Os embriões de 1-3d.o. foram classificados entre os estágios (st.) 17 e 23, com ausência da formação ocular até a presença de olhos sem pigmentação; de 15d.o. no st. 26, com olhos pigmentados e ductos endolinfáticos calcificados; de 25d.o. no st. 31, com escamas no corpo não pigmentado e a musculatura dos flancos não fusionada na linha mediana ventral; de 30d.o. entre os st. 31 e 33, que em adição à formação descrita no período anterior, apresentam membrana palpebral completa e musculatura fusionadas na linha mediana ventral na região pré-cardíaca; de 45d.o. entre os st.34 e 36, com musculatura completamente fusionada na linha mediana ventral e começando a desenvolver um padrão de pigmentação; de 65d.o. no st. 37 (último da tabela) com o padrão de pigmentação bem desenvolvido de coral em tríades, típico da espécie, e com o dente do ovo, e com ~75d.o. os ovos eclodiram com filhotes sadios, que apresentam cicatriz umbilical e o dente do ovo permanece presente até dois dias após a eclosão. A hematopoese em ovos de 1-3 e 15d.o. foi caracterizadas como hematopoese extraembrionária, ocorrendo nos vasos das membranas extraembrionárias e na fenda vitelínica, e hematopoese intraembrionária, na região AGM (aorta gonadal mesonéfrons), principalmente no interior da artéria aorta dorsal, que continua como local hematopoético embrionário até no período de 30d.o., porém com estruturas mais diferenciadas; com 45d.o. o principal local hematopoético passa a ser medula óssea, com foco hematopoético de multi-linhagem sanguínea a partir de 60d.o., nos seios vertebrais e medula costal, constituindo o local hematopoético definitivo. Foi observada a atividade hematopoética junto ao tecido renal, com o desenvolvimento da região AGM, entre os períodos de 15 a 30d.o., o timo e baço apresentam diferenciação linfocítica, observados a partir de 30 e 45d.o., respectivamente e o fígado não apresenta hematopoese embrionária. Esta é a primeira descrição do desenvolvimento embrionário de uma serpente Caenophidia ovípara e da hematopoese embrionária de Serpentes, contribuindo para o conhecimento da fisilogia destes processos e indicando a necessidade de estudos tanto para um melhor entendimento do desenvolvimento embrionário, quanto para a compreensão da ontogenia da hematopoese das serpentes. / Morphological descriptions are the first steps to understand the physiology of organisms and their systems. Developmental biology and ontogeny of hematopoiesis of snakes are poorly known, and the embryonic hematopoiesis is completely unknown. The main goals of this study were to characterize the embryonic and hematopoiesis development of the false coral snake Oxyrhopus guibei (Dipsadidae: Xenodontinae) since oviposition. Analysis of external morphological characters regarding the classification developmental stages for developmental stages classification has been made for 30 embryos with 1 -3, 15, 25, 30, 45, 65 and ~ 75 days after oviposition days (o.d.) (when hatched), and histological sections of 29 eggs (or embryos) from 1-3, 15, 25, 30, 45, 60o.d. and one day neonates and one week after birth for the characterization of embryonic hematopoiesis. The embryos with 1-3o.d. were ranked between 17 and 23 stages (st.), with the absence of eye formation to the presence of unpigmented eyes; with 15o.d. in 26 st., with pigmented eyes and calcified endolymphatic duct; with 25o.d. in 31 st., with unpigmented body scales and muscles of the flanks not fused in the midline, with 30o.d. between 31 and 33 st., which in addition to the preceeding form, have full eyelid membrane and muscles fused at midline in the pre-cardiac region; with 45d.o. between 34 and 36 st., with muscles completely fused in the midline and beginning the development of pigmentation pattern, with 65o.d. in 37 st. (last stage of table) with the distinctive pigmentation tricolor-triad pattern , and the egg tooth, and ~ 75 d.o. health newborns have hatched, exhibiting the umbilical scar and the egg tooth up to two days after hatching. The hematopoiesis in eggs of 1-3 and 15o.d. was characterized as extraembryonic hematopoiesis, occurring in the vessels of extraembryonic membranes and in yolk clef, and intraembryonic hematopoiesis, in the AGM (gonad mesonefron aorta), mainly within the dorsal aorta, which continues as the embryonic hematopoietic site until the 30o.d., although with better differentiated structures; wth 45o.d. the bone marrow turns the main hematopoietic site, and with a hematopoietic focus of multi-lineage blood beginning in the 60d.o. at vertebral sinus and the ribs marrow, consisting the definitive hematopoietic sites. Hematopoietic activity was observed with the kidney tissue, through development of the AGM region, between the periods of 15 to 30d.o., thymus and spleen lymphocyte differentiation have been observed at 30 . and 45o.d., respectively, and the liver does not displays embryonic hematopoiesis. This is the first description of embryonic development of an oviparous Caenophidia snake and of the embryonic hematopoiesis in Serpentes, contributing to the knowledge the physiology of these processes and demonstrating the need of further studies for a better understanding of both embryonic development and the ontogeny snake.
7

Phylogeny and Evolutionary History of the Amniote Egg

Starck, J. M., Stewart, James R., Blackburn, Daniel G. 01 July 2021 (has links)
We review morphological features of the amniote egg and embryos in a comparative phylogenetic framework, including all major clades of extant vertebrates. We discuss 40 characters that are relevant for an analysis of the evolutionary history of the vertebrate egg. Special attention is given to the morphology of the cellular yolk sac, the eggshell, and extraembryonic membranes. Many features that are typically assigned to amniotes, such as a large yolk sac, delayed egg deposition, and terrestrial reproduction have evolved independently and convergently in numerous clades of vertebrates. We use phylogenetic character mapping and ancestral character state reconstruction as tools to recognize sequence, order, and patterns of morphological evolution and deduce a hypothesis of the evolutionary history of the amniote egg. Besides amnion and chorioallantois, amniotes ancestrally possess copulatory organs (secondarily reduced in most birds), internal fertilization, and delayed deposition of eggs that contain an embryo in the primitive streak or early somite stage. Except for the amnion, chorioallantois, and amniote type of eggshell, these features evolved convergently in almost all major clades of aquatic vertebrates possibly in response to selective factors such as egg predation, hostile environmental conditions for egg development, or to adjust hatching of young to favorable season. A functionally important feature of the amnion membrane is its myogenic contractility that moves the (early) embryo and prevents adhering of the growing embryo to extraembryonic materials. This function of the amnion membrane and the liquid-filled amnion cavity may have evolved under the requirements of delayed deposition of eggs that contain developing embryos. The chorioallantois is a temporary embryonic exchange organ that supports embryonic development. A possible evolutionary scenario is that the amniote egg presents an exaptation that paved the evolutionary pathway for reproduction on land. As shown by numerous examples from anamniotes, reproduction on land has occurred multiple times among vertebrates—the amniote egg presenting one “solution” that enabled the conquest of land for reproduction.

Page generated in 0.0641 seconds