Spelling suggestions: "subject:"försäljningsprocessen"" "subject:"försäljningspriser""
1 |
Sales forecasting for supply chain using Artificial Intelligence / försäljningsprognoser för försörjningskedjan använder artificiell intelligensMittal, Vaibhav January 2023 (has links)
Supply chain management and logistics are two sectors currently experiencing a transformation thanks to the advent of AI(Artificial Intelligence) technologies. Leveraging predictive analytics powered by AI presents businesses with novel opportunities to streamline their operations effectively. This study utilizes sales forecasting for predictive analysis using three distinct artificial intelligence paradigms : Long Short-term Memory (LSTM), Bayesian Neural Networks (BNN) – both of which belong to the family of deep learning models – and Support Vector Regressors (SVR), a machine learning technique. The empirical data employed for this forecast stems from the historical sales data of Bactiguard, the collaborating company in this study. Subsequent to the essential data manipulation, these models are trained, and their respective results are assessed. The evaluation matrices incorporated in this study include the mean absolute error (MAE), root mean square error (RMSE), and the R2 score. Upon analysis, the LSTM model emerges as the clear frontrunner, exhibiting the lowest error rates and the highest R2 score. The BNN follows closely, demonstrating credible performance, while the SVR lags, presenting suboptimal results. In conclusion, this study highlights the accuracy and efficiency of artificial intelligence models in sales forecasting and underscores their practical, real-world applications. / Supply chain management och logistik är två sektorer som för närvarande genomgår en förändring tack vare tillkomsten av AI(artificiell intelligens) teknik. Att utnyttja prediktiv analys som drivs av AI ger företag nya möjligheter att effektivisera sin verksamhet. Denna studie använder försäljningsprognoser för prediktiv analys med hjälp av tre distinkta artificiell intelligensparadigm: Long Short-term Memory (LSTM), Bayesian Neural Networks (BNN) - som båda tillhör familjen av modeller för djupinlärning - och Support Vector Regressors ( SVR), en maskininlärningsteknik. Den empiriska data som används för denna prognos härrör från historiska försäljningsdata från Bactiguard, det samarbetande företaget i denna studie. Efter den väsentliga datamanipulationen tränas dessa modeller och deras respektive resultat utvärderas. De utvärderingsmatriser som ingår i denna studie inkluderar det genomsnittliga absoluta felet (MAE), root mean square error (RMSE) och R2-poängen. Vid analys framstår LSTM-modellen som den tydliga föregångaren, som uppvisar de lägsta felfrekvenserna och den högsta R2- poängen. BNN följer noga och visar trovärdig prestanda, medan SVR släpar efter och ger suboptimala resultat. Sammanfattningsvis belyser denna studie noggrannheten och effektiviteten hos modeller med artificiell intelligens i försäljningsprognoser och understryker deras praktiska tillämpningar i verkligheten.
|
2 |
Challenges in forecasting management for global companies / Utmaningar inom prognoshantering för globala företagBornelind, Patrik January 2019 (has links)
In today’s fast-moving world, a company´s ability to align with changes in the market is becoming a major competitive factor. Demand forecasting form the basis of all supply chain planning and is a process that companies often fail to recognize as a key contributor to corporate success. Different contexts and market dynamics creates different challenges for companies to overcome in order to have an efficient forecasting process, matching demand with supply. This master thesis looks at the whole forecasting process, also called forecasting management, at a decentralized global company to identify the main challenges within the process and propose recommendations on how to overcome them. The research is based on a single case study where the forecasting process is investigated using four different dimensions: Functional Integration, Approach, Systems and Performance Measurements. The study identified twelve challenges in the forecasting process where a majority can be connected to issues within information sharing and lack of support in the process. Based on the identified challenges, eight improvement suggestions where developed to target the challenges and improving the process for a decentralized global company. / I dagens snabbt utvecklande och växande landskap så är ett företags förmåga att anpassa sig till marknadens behov en betydande konkurrensfaktor. Säljprognoser utgör grunden för all planering inom försörjningskedjan och är en process som företag ofta inte erkänner som en viktig bidragsgivare till företagets framgång. Olika marknadslandskap och förutsättningar skapar olika utmaningar för företag att bemästra för att kunna bedriva ett effektivt prognosarbete och matcha efterfrågan med utbud. Detta examensarbete tittar på hela prognosprocessen, även kallad prognoshantering, hos ett decentraliserat globalt företag för att identifiera de viktigaste utmaningarna i processen och föreslå rekommendationer om hur man kan övervinna dem. Forskningen bygger på en enda fallstudie där prognosprocessen undersöks utifrån fyra olika dimensioner: Funktionell integration, strategi, system och prestandamätningar. Studien identifierade tolv utmaningar i prognosprocessen där en majoritet kan kopplas till utmaningar inom informationsdelning och brist på stöd i processen. Baserat på de identifierade utmaningarna utvecklades åtta förbättringsåtgärder för att övervinna utmaningarna och förbättra processen för ett decentraliserat globalt företag.
|
Page generated in 0.076 seconds