• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 465
  • 313
  • 90
  • 75
  • 25
  • 8
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1295
  • 286
  • 227
  • 149
  • 122
  • 122
  • 120
  • 104
  • 98
  • 94
  • 94
  • 92
  • 91
  • 88
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Valve de substitution textile en polyéthylène téréphtalate PET : optimisation et fonctionnalisation du matériau

Amri, Amna 11 February 2021 (has links)
Thèse en cotutelle : Université Laval, Québec, Canada, Philosophiæ doctor (Ph. D.) et Université de Haute Alsace, Mulhouse, France / Le remplacement de la valve aortique par chirurgie non invasive TAVR est devenu une alternative au remplacement à cœur ouvert chez des patients à haut risque chirurgical. En 2018, plus de 300 000 patients à travers le monde ont reçu une valve aortique par voie transcathéter ce qui représente un marché mondial d'une valeur de 2 milliards de dollars par an. Cependant la durée de vie du tissu biologique utilisé pour réaliser les feuillets valvulaires dans les dispositifs existants reste une problématique à résoudre, car il existe très peu de données cliniques sur le sujet. En effet, l’implantation transcathéter impose des contraintes spécifiques, qui tendent à dégrader et fragiliser le matériau dont la durée de vie devient limitée. Le succès de la procédure TAVR favorise la recherche des matériaux synthétiques de remplacement valvulaires comme alternatives aux tissus biologiques, dont la durabilité reste inconnue. En particulier, la valve textile a récemment prouvé sa durabilité sur une étude In Vivo de 6 mois effectuée sur des moutons. La fibrose et la calcification restent cependant des facteurs critiques à contourner. Dans ce contexte, cette thèse s’inscrit dans la perspective de développer des stratégies pour améliorer labio compatibilité de la valve de substitution textile en polyéthylène téréphtalate PET. Dans le cadre de ce projet, deux stratégies ont été investiguées parallèlement pour limiter les problématiques de biocompatibilité de la valve textile. Premièrement, une fonctionnalisation de la valve textile au Polyéthylène glycol a été effectué pour augmenter son caractère hydrophile ce qui limiterait la fibrose. La valve est traitée en surface au plasma pour ne pas compromettre la flexibilité et les propriétés mécaniques du matériau textile. Une caractérisation du traitement ainsi que des études in vitro complétées par deux implantations in vivo ont été réalisées. Deuxièmement, un concept innovant de la valve hybride a été étudié. Ce concept consiste à élaborer un textile hybride composé d’un tissé de polytéréphtalathe d’éthylène (PET) auquel sera adjoint un textile non tissé de microfibres de PET afin de limiter la fibrose. Les caractéristiques physiques et les performances mécaniques de cette valve hybride ont été étudiées. Cette stratégie a été complétée par l’étude des intéractions du substrat de textile hybride avec les cellules. Des textiles hybrides de différents types ont été considérés pour démontrer l’influence de leurs propriétés physico-chimiques sur le comportement cellulaire. Cette étude vient confirmer le potentiel du concept de la valve hybride pour limiter le phénomène de fibrose Dans l’ensemble, ce projet de recherche a mis en évidence que ces deux stratégies ont bel et bien limité la fibrose mais ils ont révélé une problématique de calcification qui est critique dans la mesure où elle provoque la rigidification des feuillets de la valve. Plusieurs stratégies seront discutées pour limiter ce phénomène. / Over the last decade, transcatheter aortic valve replacement (TAVR) has become an accepted alternative technique to surgical valve replacement for over 300.000 patients worldwide in 2018, representing a global market worth-2 billion per year. This non-invasive technique provides increased comfort to the patient but is today mainly used for critical patients who cannot undergo classic surgery. Currently, the valve material used in the TAVR procedure is made of biologic tissues. However, there is a lack of data about the long-term durability of biological tissues used in transcatheter devices. Consequently, future devices should be manufactured with a smaller diameter in order to be more easily inserted through already diseased artery networks. Accordingly, it is of interest to investigate the potential of synthetic valve leaflet materials as an alternative to biological tissues. In particular, textile valves have recently proven durability in vivo over a 6 months period in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. In this context, the aim of this work is to investigate strategies to improve the biocompatibility of the polyethylene terephthalate (PET) textile valve. As part of this project, two strategies were studied in order to limit the problems of biocompatibility of the textile valve. The first strategy consists on investigating the potential of PET textiles covalently conjugated with PEG to modulate the fibrosis formation both in vitro and in vivo. For this purpose, the surfaces of heart valves made of PET textiles were functionalized using an atmospheric pressure plasma in a gas environment enabling the formation of carboxylic acid (-COOH) groups on the surface of the material and further conjugated with PEGNH2. PEGylated surfaces were then characterized, and cell culture was carried out using rat cardiac fibroblast cells. In addition, an in vivo implantation of a PEG treated valve in a juvenile sheep model was performed and showed a significant fibrosis reduction. The implantation also revealed calcification issues that need to be addressed. The second strategy consists on investigating the design of a composite hybrid fibrous construction combining a woven PET layer and a non-woven PET mat, which are expected to provide respectively strength and appropriate topography towards limited fibrotic tissue ingrowth. For that purpose, a specific equipment has been developed to produce slight non-woven PET mats. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. Then, a study of the interactions of the hybrid textile substrate with cells was conducted. Hybrid textiles of different types have been explored to demonstrate the influence of their physicochemical properties on cellular behavior. Results bring out that the composite hybrid fibrous construction is characterized by properties suitable for the valve leaflet function and for limiting the phenomenon of fibrosis, but the durability of the assembling is however limited under accelerated cyclic loading. Briefly, this research project revealed that these two strategies did indeed limit fibrosis, but that there is another problem of calcification that is critical as it stiffens the leaflets of the valve. Several strategies will be discussed to limit this phenomenon.
122

Photoresist Development on Sic and Its Use as an Etch Mask for Sic Plasma Etch

Mishra, Ritwik 03 August 2002 (has links)
Photoresist is a light sensitive material whose physical and chemical properties change when exposed to light. Photoresist makes it possible to transfer the image of a circuit pattern directly onto a substrate. The first part of this work deals with developing a photo process using AZ 1518 and AZ P4330 positive resists on SiC substrate. The aim was to determine the optimal spin parameters, softbake time, and exposure time for these resists matching their thickness. AZ 1518 process was developed for a 1.76 um thickness and AZ P4330 for 4.3 um thickness. With the parameters obtained the resist had about 5% of difference in thickness across a wafer surface. The absence of practical wet chemical etching of SiC is the reason for the study of dry, plasma etching of SiC in this thesis. There is an interest in photoresist as an etch mask because it is cheap, easy to deposit, pattern and remove. However its ability to mask etching of materials with high bond strength like SiC is limited. This work examines its selectivity under various etching parameters and determines the effect of increase in the RF power on selectivity, SiC etch rate and photoresist etch rate.
123

Composite and microcomposite fabrication via depletion stabilization routes

Wernet, Judith Hedwig January 1995 (has links)
No description available.
124

The Data, The Generic, and the Architecture

Nguyen, Levy H. 27 October 2014 (has links)
No description available.
125

ACCELERATED CONSTRUCTION DECISION MAKING PROCESS

ARURKAR, TEJAS PRAKASH 02 October 2006 (has links)
No description available.
126

Hybrid Craft: Designing a workflow for traditional and digital craftsmen

Grajewski, Zachary T. 10 September 2015 (has links)
No description available.
127

I Design. I Build. Sometimes in That Order: An Argument for Construction-Centered Design Process

Huizenga, Richard 28 June 2016 (has links)
No description available.
128

Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

Sun, Leming 18 May 2017 (has links)
No description available.
129

Setting CMOS environment for VLSI design

Chung, Chih-Ping January 1989 (has links)
No description available.
130

Effect of Small Cerium Additions on Microstructure and Mechanical Properties of Al-Mg-Fe Alloy

Yan, Xiaofei 09 1900 (has links)
<p>The application aluminum sheet alloy for light vehicle development was limited by the high cost of alloy fabrication. The impurity iron, which is easily picked up during fabrication, deteriorates its formability. The sheet alloy produced by continuous casting techniques was showing lower in-service performance than the one produced with traditional high-cost direct-chill casting technique. Therefore, enhancing the general formability of the aluminum alloy became .the aim of many researchers and engineers in past decades.</p><p>This project was launched to detect a possible modification effect of rare-earth (RE) element on a Al-Mg-Fe alloy, which is a simplified AA5754 alloy. Cerium was chosen as the RE element to test with. The influence of this rare-earth element on the alloy grain microstructure, phase morphology, and corresponding mechanical behavior was investigated.</p><p>It was found that cerium had a modification effect on the phase morphology to some extent. Its addition provided a great grain refinement in as-cast alloys. However, after thermo-mechanical processing, this effect would be eliminated by the small broken particles and recrystallized fine grains. It was found that the mechanical performance of the cerium-containing AA5754 was neither enhanced nor deteriorated. The AA5754 alloy remained non-heat-treatable after the addition of cerium.</p> / Thesis / Master of Applied Science (MASc)

Page generated in 0.1158 seconds