• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 462
  • 311
  • 90
  • 75
  • 25
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1288
  • 285
  • 226
  • 149
  • 122
  • 121
  • 119
  • 104
  • 98
  • 94
  • 94
  • 92
  • 91
  • 88
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Artesanía en Latinoamérica: Experiencias en el contexto de la Fabricación Digital

Herrera Polo, Pablo C. 11 1900 (has links)
In moments when the artisanship tradition seems to disappear because of industrial production, we analyze cases where digital fabrication and visual programming were used in Latin American craft, encouraged by architects with skills in digital tools. The situations confront artisans with access to digital platforms and internet, use of learned skills, and the need to modify the technological level in their products and processes. Regional initiatives, which could change contemporary design history in the region with the establishing of a trans-disciplinary systematized synergy, show that traditional materials are used and unique components maintain their originality, from a region that attempts to enter into new global markets.
72

Digital fabrication and revival craft in Latin America: Alliance between designers and artisans

Herrera Polo, Pablo C. 10 1900 (has links)
Latin America has experienced scripting and digital fabrication, and the alliance between designers and artisans. Taking into account that the revival of crafts has proved very promising in Latin America (Borges, 2015), the objective of this research is to analyse the diversity of cases and select those where designers took an interest for strengthening the artisans’ jobs in the field of pottery and textiles. We found that both revitalised the identity and cultural tradition in their own countries, in a moment when craft seemed to drop in front of industrial production. By preserving traditional materials, pieces continue to be unique and customizable, transcending thus their local origin towards new global markets.
73

Modélisation par une méthode pseudospectrale : différences-finies et fabrication de transducteurs ultrasonores pour l'imagerie médicale haute résolution

Filoux, Erwan 07 April 2009 (has links)
L'imagerie ultrasonore haute résolution est aujourd'hui indispensable à l'établissement de nombreux diagnostics médicaux. Elle est basée sur l'utilisation de transducteurs piézoélectriques haute fréquence (HF) qui sont fabriqués à l'aide de matériaux et de techniques adaptés. L'optimisation de leurs performances nécessite en général l'utilisation de plusieurs modèles numériques pour simuler à la fois la vibration du résonateur et son rayonnement. Ce travail de thèse présente un nouvel algorithme basé sur un couplage pseudospectral / différences-finies, permettant de modéliser la génération et la propagation des ondes acoustiques dans un transducteur et son environnement avec un seul modèle. Cet algorithme hybride a été utilisé pour simuler le fonctionnement de différents transducteurs fabriqués au cours de cette thèse. Les résultats ont été validés de façons théorique et expérimentale, et ils ont permis d'étudier les influences de différents paramètres sur les performances des transducteurs fabriqués / High resolution ultrasonic imaging has become an essential tool to assist physicians for various medical diagnoses. This technique relies on the ability of piezoelectric transducers to generate a high frequency (HF) acoustic field into the scanned media. Such transducers are obtained using particular materials and fabrication processes.They are optimized through modeling of their electromechanical behaviour and acoustic radiation pattern, which usually requires the use of several models. A new algorithm has been developped and is presented in this report, which is based on the coupling of pseudospectral and finite-diffrence methods to simulate both the generation and the propagation of acoustic waves in the transducer and the surrounding media, using a single model. This hybrid algorithm has been used to simulate various transducers and the results were accordingly compared to theory and experiments. It has also been used to study the influence of various parameters on the performance of several single-element and array transducer devices.
74

Effect of different fabrication processes and coloring on the properties of monolithic alumina

Alhenaki, Aasem Mutlaq 15 May 2019 (has links)
OBJECTIVES: To investigate the effect of different alumina fabrication techniques and sintering temperatures on the biaxial flexural strength. Also, to assess the resulting color of multiple metal salt solutions at different concentrations in monolithic alumina and its effect on the optical properties of the restoration. MATERIAL & METHOD: Forty disk-shape alumina specimens were divided into 4 groups (n=10) based on the fabrication process (slip cast or die press) and sintering temperature (1530°C or 1600°C). Biaxial flexural strength was calculated using universal testing machine at a crosshead speed rate of 0.5 mm/min until failure occurred. For the coloring part of the study, nine elements (Ba, Ce, Cr, Fe, Mn, Nd, Pr, Sm, Zn) were used to form metal-salt coloring solutions at a concentration of 0.1%, 1% and 5% wt. The solutions were then used to infuse 162 pre-sintered porous alumina disks that are either slip-casted (A1000) or die-pressed (CT3000). Color coordinates were recorded in CIE L*a*b* system using spectrophotometer. Color differences relative to the control (ΔE), translucency parameter (TP), contrast ratio (CR) and total transmission were calculated and analyzed using two-way analysis of variance (ANOVA) with Tukey post hoc test at α = 0.05. RESULTS: Slip cast group sintered at 1530°C had the highest flexural strength (479.14 MPa), but there was no significant difference between the four groups neither by fabrication process (p = 0.127) nor by sintering temperature (p = 0.276). Die press specimens colored with Ba at 0.1% and 1% showed significantly higher TP (2.65 and 2.49) and lowest CR (96.15 and 96.30) among the groups. There was a statistically significant effect on TP and CR when changing alumina powder on specimens colored by Ba, Ce, and Zn (p < 0.05). Changing the concentration of the coloring solution caused a significant effect on the optical properties of specimens colored by Ba, Nd, Cr, Mn. ΔE was significantly changed when changing alumina powder and coloring concentration for all elements except Ce, Pr, and Sm. CONCLUSION: Changing fabrication method and sintering temperature did not affect the biaxial flexural strength. However, the fabrication method and metal-salt colorant concentration affected the optical properties of the specimens. / https://hdl.handle.net/2144/35681
75

Design, fabrication and characterization of one dimensional photonic crystal devices

Shi, Xiaohua January 2007 (has links)
Photonic crystals (PhCs) are periodically structured electromagnetic media, generally characterised by not permitting light of defined ranges of frequency to propagate through the structure. These disallowed ranges of frequency are known as photonic band gaps. The intentional introduction of defects into the crystal gives rise to localized electromagnetic states that provide a mechanism for the control of the propagation of photons through PhCs. In the case of one dimensional (1-D) PhCs, the introduction of a single defect into a finite PhC results in the formation of a resonant cavity structure, a so-called microcavity. The ease of fabrication and scope for integration make 1-D PhCs good candidates for the future applications of PhCs in light transmission systems and, as such, these structures are the focus of the research reported here. The aim of this thesis is to report a practical study of passive 1-D PhC devices and thereby extend the base of measurements that support and extend the results of theory and simulation. Various types of 1-D PhC structures have been fabricated using electron beam lithography and inductively coupled plasma technologies in a clean-room environment. The fabricated structures in effect demonstrate a first or primitive level of integration of 1-D PhCs with another optical device, namely a ridge waveguide. Measurements were performed by butt-coupling from a single mode fibre taper of the transmission characteristics of the resulting integrated waveguides, whilst a Side-band measurement method for very high resolution (0.2pm) microcavity characterisation was invented during the measurement process. A multiple wavelength transmission optical filter transmitting at the telecommunication wavelengths of 1310nm and 1550nm, and which could be used in a WDM system was demonstrated. The effect of introducing mode matching structures to minimize II the scattering loss and boost the quality factor value was investigated. Optimum positioning of the tapers produced a significant enhancement of Q. Finally, a narrow pass band filter constructed from coupled cavities was fabricated and characterised. A quasi-flat transmission peak with a pass band width of just 4nm was observed.
76

Materials Informatics Approach to Material Extrusion Additive Manufacturing

Braconnier, Daniel J 13 April 2018 (has links)
Process-structure-property relationships in material extrusion additive manufacturing (MEAM) are complex, non-linear, and poorly understood. Without proper characterization of the effects of each processing parameter, products produced through fused filament fabrication (FFF) and other MEAM processes may not successfully reach the material properties required of the usage environment. The two aims of this thesis were to first use an informatics approach to design a workflow that would ensure the collection of high pedigree data from each stage of the printing process; second, to apply the workflow, in conjunction with a design of experiments (DOE), to investigate FFF processing parameters. Environmental, material, and print conditions that may impact performance were monitored to ensure that relevant data was collected in a consistent manner. Acrylonitrile butadiene styrene (ABS) filament was used to print ASTM D638 Type V tensile bars. MakerBot Replicator 2X, Ultimaker 3, and Zortrax M200 were used to fabricate the tensile bars. Data was analyzed using multivariate statistical techniques, including principal component analysis (PCA). The magnitude of effect of layer thickness, extrusion temperature, print speed, and print bed temperature on the tensile properties of the final print were determined. Other characterization techniques used in this thesis included: differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The results demonstrated that printer selection is incredibly important and changes the effects of print parameters; moreover, further investigation is needed to determine the sources of these differences.
77

Experimental fabrication and characterisation of textile metamaterial structures for microwave applications

Greinke, Berit January 2017 (has links)
This thesis presents an investigation of fabrication technologies and electromagnetic characterisation of textile metamaterials in the microwave frequency range. Interdisciplinary in nature, the work bridges textile design practice and electromagnetic engineering. The particular ambition was to explore a number of surface techniques prevalent in the textile design field, and map their suitability for the construction of metatextiles for microwave operation. Two different classes of metatextiles, all-dielectric and dielectric with electrically conductive patterns, were examined. First, five structures of all-dielectric textiles and papers are reported; three textiles with graded embroidered and screen printed patterns, and two papers embellished with regular and irregular laser cut patterns. Permittivities for these materials were measured in a purpose-built test chamber and shown to be similar to permittivity ranges exhibited by solid discrete metamaterial cells previously reported in the scientific literature. Importantly these metatextiles were realised within one textile surface and one fabrication process, bypassing the need to assemble large numbers of isotropic material cells. This reveals the potential for rapid and low-cost manufacture of graded textile materials to produce anisotropic ground plane cloaks. Secondly, three studies are presented that examine the use of electrically conductive patterned textile materials in the design of metatextiles which exhibit negative refractive index over a narrow frequency band. A range of e-textile (electronic textile) fabrication technologies were explored to assess their suitability for prototyping splitring and wire arrays, resonating in a narrow region between 3 - 10 GHz. Designs utilised a repeated unit cell pattern on a two-dimensional textile surface and were subsequently pleated into the required three-dimensional structure. A small negative refractive index was achieved for an embroidered prototype at 4.9 GHz, and two 'printed and plated' prototypes at, 7.5 GHz and 9.5 GHz respectively. In summary the thesis demonstrates a set of guidelines for the fabrication of textile metamaterials for microwave frequencies, derived through a practice-led and interdisciplinary method based on material experimentation.
78

Fabrication and thermal conductivity characterization of phononic engineered silicon membranes for thermoelectric applications / Fabrication et mesure de la conductivité thermique de membranes phononiques de silicium pour des applications thermoélectriques

Lacatena, Valeria 01 June 2016 (has links)
La thermoélectricité rencontre un intérêt croissant ces dernières années comme source d'énergie alternative pour l’alimentation de dispositifs micro- et nano- électroniques. Les matériaux thermoélectriques transforment par effet Seebeck une différence de température en énergie électrique utile. Dans les dispositifs thermoélectriques, l’énergie perdue en général sous forme de chaleur résiduelle peut ainsi être recyclée en utilisant les gradients de température existants. L'efficacité thermoélectrique dépend des propriétés électroniques du matériau et de sa conductivité thermique κ. Le silicium présente une très bonne conductivité électrique et un coefficient Seebeck prometteur, mais sa conductivité thermique phononique limite fortement son potentiel pour des applications thermoélectriques, du moins sous forme de matériau massif. Par contre, la nanostructuration du silicium en couches minces, et a fortiori la fabrication de cristaux phononiques permet de réduire fortement la conductivité thermique. Dans ce travail, des simulations de dynamique moléculaire sont réalisées pour confirmer cette stratégie et permettre la définition d'un design optimal de membranes perforées. De plus, le travail expérimental montre différentes méthodologies de fabrication de membranes phononiques de silicium intégrées dans une plate-forme de métrologie. Plusieurs techniques de caractérisation (Electrothermique, Raman et Microscopie à sonde thermique) ont ensuite été utilisées pour déterminer la conductivité thermique des membranes. Une réduction considérable de κ est obtenue pour le silicium, permettant d’envisager l’intégration de ces membranes dans un convertisseur thermoélectrique. / In the last twenty years, the continuous seek for alternative energy sources to power micro- and nano-electronic devices has marked the rise of interest toward thermoelectricity. Thermoelectric materials can turn directly, by Seebeck effect, the temperature difference into useful electric power. The energy lost as waste heat can be re-used as a power source. It is known that, to improve thermoelectric efficiency, an important role is played by material’s electronic properties and its thermal conductivity. Silicon exhibits very good electrical conductivity and Seebeck parameter, but its lattice thermal conductivity represents the bigger obstacle for thermoelectric applications, preventing its direct integration as bulk material. It has been demonstrated that nanostructuring silicon in thin films enables the reduction of thermal conductivity down to one order of magnitude. Furthermore, a supplementary decrease of thermal conductivity is possible by periodical patterning of the silicon thin film in a photonic-like way, creating Phononic Crystals (PnCs). In our work molecular dynamics simulations are performed to confirm the trend envisaged and allow the definition of an optimal design for the patterned membranes. Moreover, our experimental work lists different fabrication methodologies of silicon phononic engineered membranes integrate into a metrology platform. Several characterization techniques (Electrothermal , Raman thermometry, Scanning Thermal Microscopy) are used to determine the membranes thermal conductivity. A considerable reduction of κ is obtained for silicon, paving the way for a prospective integration of those membranes into a thermoelectric converter.
79

Direct Fabrication of Planar Grating by Ultrafast Laser Beam

Venkatakrishnan, K., Hee, C.W., Sivakumar, N.R., Ngoi, Kok Ann Bryan 01 1900 (has links)
Femtosecond laser pulse has been used for the machining of the gratings primarily due to its superior advantages over conventional continuous wave (CW) and long pulse lasers for micromachining. In this paper, we develop a novel technique for the fabrication of planar gratings by colliding two beams to generate interference fringes. This technique is simple, fast and low cost. We have successfully fabricated planar gratings on a copper substrate. / Singapore-MIT Alliance (SMA)
80

Micro-layered-photolithography for Micro-Fabrication and Micro-Molding

Tang, Y., Loh, Han Tong, Fuh, J.-Y.-H., Lu, L., Wong, Yeow Sheong, Thian, S. C. H. 01 1900 (has links)
A novel process based on the principle of layered photolithography has been proposed and tested for making real three-dimensional micro-structures. An experimental setup was designed and built for doing experiments on this micro-fabrication process. An ultraviolet (UV) excimer laser at the wavelength of 248 nm was used as the light source and a single piece of photo-mask carrying a series of two dimensional (2D) patterns sliced from a three dimensional (3D) micro-part was employed for the photolithography process. The experiments were conducted on the solidification of liquid photopolymer from single layer to multiple layers. The single-layer photolithography experiments showed that certain photopolymers could be applied for the 3D micro-fabrication, and solid layers with sharp shapes could be formed from the liquid polymer identified. By using a unique alignment technique, multiple layers of photolithography was successfully realized for a micro-gear with features at 60 microns. Electroforming was also conducted for converting the photopolymer master to a metal cavity of the micro-gear, which proved that the process is feasible for micro-molding. / Singapore-MIT Alliance (SMA)

Page generated in 0.5719 seconds