Spelling suggestions: "subject:"familybased association test"" "subject:"familiesbased association test""
1 |
NTM and NR3C2 Polymorphisms Influencing Intelligence: Family-Based Association StudiesPan, Yue, Wang, KeSheng, Aragam, Nagesh 15 January 2011 (has links)
Family, twin, and adoption studies have indicated that human intelligence quotient (IQ) has significant genetic components. We performed a low-density genome-wide association analysis with a family-based association test to identify genetic variants influencing IQ, as measured by Wechsler Adult Intelligence Scale full-score IQ (FSIQ). We examined 11,120 single-nucleotide polymorphisms (SNPs) from the Affymetrix GeneChips 10K mapping array genotyped in 292 nuclear families from Genetic Analysis Workshop 14, a subset from the Collaborative Study on the Genetics of Alcoholism (COGA). A replication analysis was performed using part of International Multi-Center ADHD Genetics Project (IMAGE) dataset. Twenty-two SNPs were identified as having suggestive associations with IQ (p<10-3) in the COGA sample and eleven of the SNPs were located within known genes. In particular, NTM at 11q25 (rs411280, p=0.000764) and NR3C2 at 4q31.1 (rs3846329, p=0.000675) were two novel genes which have not been associated with IQ in other studies. It has been reported that NTM might play a role in late-onset Alzheimer disease while NR3C2 may be associated with cognitive function and major depression. The associations of these two genes were well-replicated by single-marker and haplotype analyses in the IMAGE sample. In conclusion, our findings provide evidence that chromosome regions of 11q25 and 4q31.1 contain genes affecting IQ. This study will serve as a resource for replication in other populations.
|
2 |
The Genetics of Systemic Lupus Erythematosus : The Specificity of IRF5 to SLE.Linga Reddy, MV Prasad January 2007 (has links)
<p>The breakdown of self-tolerance is the main driving force behind susceptibility to SLE. When this occurs, T and B cells are activated in an uncontrolled manner and produce autoantibodies against self fragmented DNA, RNA and sometimes other parts of the cell such as cardiolipin, phosphatidylserine, etc.</p><p>The mechanism behind the breakdown of self-tolerance may be genetic factors that are triggered by environmental factors. SLE is not caused by a single gene, but by many genes, and is thus a polygenic disease. So far only a few genes have been found to be associated with SLE including PDCD1, FcγRs, and PTPN22. The main aim of my thesis is to find susceptibility genes responsible for SLE.</p><p>Recently, a gene called IRF5 was found to be associated with SLE. In paper one, we performed a thorough study and confirmed its association to SLE. In addition, we found a few other SNPs in the gene that were associated to the disease. Among them, SNP rs2004640 is very strongly associated and was found to affect the splicing of the gene. Another SNP, rs2280714, correlated with overexpression of the gene, although SNP rs10954213 was much more highly correlated with expression adding to this, in paper two we found a few other SNPs that were associated to SLE and played crucial roles in gene function. An indel in exon 6, though not associated by itself, regulated which isoforms were expressed. Individuals with 2 repeats expressed isoforms V1 and V4, while individuals with 4 repeats expressed isoforms V5 and V6. SNP rs2070197 was also very strongly associated, but did not have a functional role. In paper three, the same polymorphisms were studied in a Mexican population, which showed an even stronger association when compared to a European population.</p><p>It is known that autoimmune diseases share susceptibility genes, therefore we wanted to see if the IRF5 gene is associated with any other autoimmune diseases. In papers four and five, we tested its association to RA (using three sets of patients and controls from Sweden, Argentina and Spain) and psoriasis (using a set of patients and controls from Sweden). Association was not found in either of the diseases. Therefore, we believe that this association may be SLE-specific.</p>
|
3 |
The Genetics of Systemic Lupus Erythematosus : The Specificity of IRF5 to SLE.Linga Reddy, MV Prasad January 2007 (has links)
The breakdown of self-tolerance is the main driving force behind susceptibility to SLE. When this occurs, T and B cells are activated in an uncontrolled manner and produce autoantibodies against self fragmented DNA, RNA and sometimes other parts of the cell such as cardiolipin, phosphatidylserine, etc. The mechanism behind the breakdown of self-tolerance may be genetic factors that are triggered by environmental factors. SLE is not caused by a single gene, but by many genes, and is thus a polygenic disease. So far only a few genes have been found to be associated with SLE including PDCD1, FcγRs, and PTPN22. The main aim of my thesis is to find susceptibility genes responsible for SLE. Recently, a gene called IRF5 was found to be associated with SLE. In paper one, we performed a thorough study and confirmed its association to SLE. In addition, we found a few other SNPs in the gene that were associated to the disease. Among them, SNP rs2004640 is very strongly associated and was found to affect the splicing of the gene. Another SNP, rs2280714, correlated with overexpression of the gene, although SNP rs10954213 was much more highly correlated with expression adding to this, in paper two we found a few other SNPs that were associated to SLE and played crucial roles in gene function. An indel in exon 6, though not associated by itself, regulated which isoforms were expressed. Individuals with 2 repeats expressed isoforms V1 and V4, while individuals with 4 repeats expressed isoforms V5 and V6. SNP rs2070197 was also very strongly associated, but did not have a functional role. In paper three, the same polymorphisms were studied in a Mexican population, which showed an even stronger association when compared to a European population. It is known that autoimmune diseases share susceptibility genes, therefore we wanted to see if the IRF5 gene is associated with any other autoimmune diseases. In papers four and five, we tested its association to RA (using three sets of patients and controls from Sweden, Argentina and Spain) and psoriasis (using a set of patients and controls from Sweden). Association was not found in either of the diseases. Therefore, we believe that this association may be SLE-specific.
|
4 |
Spousal Concordance in Academic Achievements and Intelligence and Family-Based Association Studies Identified Novel Loci Associated with Intelligence.Pan, Yue 13 August 2010 (has links) (PDF)
Assortative Mating, the tendency for mate selection to occur on the basis of similar traits, plays an essential role in understanding the genetic variation on academic achievements and intelligence (IQ). It is an important mechanism explaining spousal concordance. We used principal component analysis (PCA) for spousal correlation. There is a significant positive correlation between spouses by the new variable PC1 (correlation coefficient=0.515, p<0.0001). We further research the genetic factor that affects IQ by using the same data. We performed a low density genome-wide association (GWA) analysis with a family-based association test to identify genetic variants that associated with intelligence as measured by WAIS full-score IQ (FSIQ). NTM at 11q25 (rs411280, p=0.000764) and NR3C2 at 4q31.23 (rs3846329, p=0.000675) were 2 novel genes that haven't been associated with IQ from other studies. This study may serve as a resource for replication in other populations and a foundation for future investigations.
|
Page generated in 0.12 seconds