• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fatigue Analysis of 3D Printed 15-5 PH Stainless Steel - A Combined Numerical and Experimental Study

Anudeep Padmanabhan (7038047) 16 October 2019 (has links)
<div>Additive manufacturing (AM) or 3D printing has gained significant advancement in recent years. However the potential of 3D printed metals still has not been fully explored. A main reason is the lack of accurate knowledge of the load capacity of 3D printed metals, such as fatigue behavior under cyclic load conditions, which is still poorly understood as compared with the conventional wrought counterpart.</div><div><br></div><div>The goal of the thesis is to advance the knowledge of fatigue behavior of 15-5 PH stainless steel manufactured through laser powder bed fusion process. To achieve the goal, a combined numerical and experimental study is carried out. First, using a rotary fatigue testing experiment, the fatigue life of the 15-5 PH stainless steel is measured. The strain life curve shows that the numbers of the reversals to failure increase from 13,403 to 46,760 as the applied strain magnitudes decrease from 0.214\% from 0.132\%, respectively. The micro-structure analysis shows that predominantly brittle fracture is presented on the fractured surface. Second, a finite element model based on cyclic plasticity including the damage model is developed to predict the fatigue life. The model is calibrated with two cases: one is the fatigue life of 3D printed 17-4 stainless steel under constant amplitude strain load using the direct cyclic method, and the other one is the cyclic behavior of Alloy 617 under multi-amplitude strain loads using the static analysis method. Both validation models show a good correlation with the literature experimental data. Finally, after the validation, the finite element model is applied to the 15-5 PH stainless steel. Using the direct cyclic method, the model predicts the fatigue life of 15-5 PH stainless steel under constant amplitude strain. The extension of the prediction curve matches well with the previously measured experimental results, following the combined Coffin-Manson Basquin Law. Under multi-amplitude strain, the kinematic hardening evolution parameter is incorporated into the model. The model is capable to capture the stresses at varied strain amplitudes. Higher stresses are predicted when strain amplitudes are increased. The model presented in the work can be used to design reliable 3D printed metals under cyclic loading conditions.</div>
12

Acquisition Of Field Data For Agricultural Tractor

Koyuncu, Atayil 01 June 2006 (has links) (PDF)
During the operations of an agricultural tractor, front axle and front axle support encounter the worst load conditions of the whole tractor. If the design of these components is not verified by systematic engineering approach, the customers could face with sudden failures. Erkunt Agricultural Machinery Company, which is located in Ankara, has newly designed and manufactured the front axle support of its agricultural tractors. In this study, the design of 2WD (Wheel Drive) Erkunt Bereket Agricultural Tractor&amp / #8217 / s front axle support has been verified by developing a verification method, which involves testing the tractor on a special test track and field and together with the computer aided engineering analysis, in order to prevent such failures in the lifetime of the tractor. For this purpose, a strain gage data acquisition system has been designed to measure the strain values on the component, while the tractor is operating on a test track and field. The locations of the strain gages have been determined by simulating the selected design load cases through finite element method. Measuring the maximum strains for the front axle support that have been experienced by the tractor while operating, the stress values have been calculated and the design safety has been investigated considering the material&amp / #8217 / s tensile strength. Secondly, the fatigue life of the component regarding the acquired strain data has been predicted. These processes have led the company to verify the design of the front axle support.
13

Non-linear individual and interaction phenomena associated with fatigue crack growth.

Codrington, John David January 2008 (has links)
The fatigue of materials and structures is a subject that has been under investigation for almost 160 years; yet reliable fatigue life predictions are still more of an empirical art than a science. The traditional safe-life approach to fatigue design is based upon the total time to failure of a virtually defect free component. This approach is heavily reliant on the use of safety factors and empirical equations, and therefore much scatter in the fatigue life predictions is normally observed. Furthermore, the safe-life approach is unsuitable for many important applications such as aircraft, pressure vessels, welded structures, and microelectronic devices. In these applications the existence of initial defects is practically unavoidable and the time of propagation from an initial defect to final failure is comparable with the total life of the component. In the early 1970’s, the aircraft industry pioneered a new approach for the analysis of fatigue crack growth, known as damage tolerant design. This approach utilises fracture mechanics principles to consider the propagation of fatigue cracks from an initial crack length until final fracture, or a critical crack length, is reached. Since the first implementation of damage tolerant design, much research and development has been undertaken. In particular, theoretical and experimental fracture mechanics techniques have been utilised for the investigation of a wide variety of fatigue crack growth phenomena. One such example is the retardation and acceleration in crack growth rate caused by spike overloads or underloads. It is generally accepted, however, that the current level of understanding of fatigue crack growth phenomena and the adequacy of fatigue life prediction techniques are still far from satisfactory. This thesis theoretically investigates various non-linear individual and interaction phenomena associated with fatigue crack growth. Specifically, the effect of plate thickness on crack growth under constant amplitude loading, crack growth retardation due to an overload cycle, and small crack growth from sharp notches are considered. A new semianalytical method is developed for the investigations, which utilises the distributed dislocation technique and the well-known concept of plasticity-induced crack closure. The effects of plate thickness are included through the use of first-order plate theory and a fundamental solution for an edge dislocation in plate of arbitrary thickness. Numerical results are obtained via the application of Gauss-Chebyshev quadrature and an iterative procedure. The developed methods are verified against previously published theoretical and experimental data. The elastic out-of-plane stress and displacement fields are first investigated using the developed method and are found to be in very good agreement with past experimental results and finite element simulations. Crack tip plasticity is then introduced by way of a strip-yield model. The effects of thickness on the crack tip plasticity zone and plasticity-induced crack closure are studied for both small and large-scale yielding conditions. It is shown that, in general, an increase in plate thickness will lead to a reduction in the extent of the plasticity and associated crack closure, and therefore an increase in the crack growth rates. This observation is in agreement with many findings of past experimental and theoretical studies. An incremental crack growth scheme is implemented into the developed method to allow for the investigation of variable amplitude loading and small fatigue crack growth. The case of a single tensile overload is first investigated for a range of overload ratios and plate thicknesses. This situation is of practical importance as an overload cycle can significantly increase the service life of a cracked component by temporarily retarding the crack growth. Next to be studied is growth of physically small cracks from sharp notches. Fatigue cracks typically initiate from stress concentrations, such as notches, and can grow at rates higher than as predicted for a long established crack. This can lead to non-conservative estimates for the total fatigue life of a structural component. For both the overload and small crack cases, the present theoretical predictions correlate well with past experimental results for a range of materials. Furthermore, trends observed in the experiments match those of the predictions and can be readily explained through use of crack closure arguments. This thesis is presented in the form of a collection of published or submitted journal articles that are the result of research by the author. These nine articles have been chosen to best demonstrate the development and application of the new theoretical techniques. Additional background information and an introduction into the chosen field of research are provided in order to establish the context and significance of this work. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349588 / Thesis (Ph.D.) - University of Adelaide, School of Mechanical Engineering, 2008
14

Stress and fatigue analysis of SVI-tested camshaft lobes

Escobar, Jose Alejandro 08 November 1996 (has links)
Nondestructive evaluation techniques were employed to fully characterize three 2.3L camshafts tested in an engine simulator for an equivalent of 100,000 miles. Optical microscopy, acoustic microscopy (SAM), and profilometry were used to characterize wear and fatigue, crack depth, and surface roughness, respectively. Results show cracking to occur mainly in the opening ramp of the most abusively ground cam lobes. No clear evidence was found for subsurface cracking at depths as great as 200 μm from the lobe's surface. Profilometry results show no evidence of any major tribological effect due to the sliding friction of the follower. Fractography studies show a difference between fracture surfaces among the cracks examined; straight cracks exhibit features resembling fatigue propagation, while fracture surfaces from pitted cracks show a more brittle behavior. Small grinding cracks (approximately 300 μm in length) were found in the opening ramps of the most abusively ground lobes prior to testing. Knoop and Nanoindenter microhardness indicate a near-surface rehardening for the most abusively ground lobe (confirmed by metallography), and temper burn for the remaining lobes. X-ray residual stress results made in the opening ramp of the tested lobes show evidence of residual stress relaxation. X-ray line width data as a function of depth does not correlate with residual stress. / Master of Science
15

A PRACTICAL SIMULATION METHODOLOGY TO IMPROVE FATIGUE LIFE PREDICTION OF ENGINE OIL COOLER UNDERGOING PRESSURE CYCLE TESTING

Chan, KC Thomas 27 July 2014 (has links)
<p>Computer simulation is widely used to predict the fatigue life of engine oil coolers that fail under pressure cycles. The objective of this study is to develop a practical simulation methodology to accurately predict the fatigue life of an engine oil cooler undergoing pressure cycle testing. The study focuses on two key areas of the simulation process. First, it investigates the effect of using linear and nonlinear FEA to provide stress or strain results for subsequent fatigue analysis. Second, due to lack of fatigue material properties for the aluminum coreplate material, approximate material models derived from tensile properties are used in fatigue life calculation. The study has attempted to find out the material model that gives the best correlation in life prediction. The life prediction correlation based on the Seeger, the Modified Universal Slopes and the Modified Mitchell models, together with the Modified Universal Slopes-Al model, are evaluated.</p> <p>It is concluded that the Modified Universal Slopes-Al model, which is a re-assessment of the Modified Universal Slopes model based on the fatigue data of 16 wrought aluminum alloys, gives the best life prediction for simulations using either linear or nonlinear approaches. Life prediction using nonlinear finite element results together with this approximate material model is recommended to be the best approach. On the other hand, a simple and quick linear analysis, followed by fatigue life calculation using this material model still gives life estimates with an acceptable level of confidence.</p> <p>In the last part of the study, the life prediction performance using different strain-life criteria, together with either Morrow or Smith-Watson-Topper (SWT) mean stress correction, are evaluated. It is found that SWT mean stress correction method is worse than that of Morrow in EOC fatigue life prediction in both linear and nonlinear approaches. Using the principal strain criterion with SWT mean stress correction gives conservative life prediction in both approaches. On the other hand, there are no significant differences in life prediction correlations using the principal strain, the Brown-Miller combined strain and the maximum shear strain strain-life criteria, with Morrow mean stress correction. As such, the Brown-Miller combined strain criterion with Morrow mean stress correction is the recommended strain-life model used in fatigue life calculation.</p> / Master of Applied Science (MASc)
16

Study of Sn-Ag-Cu reliability through material microstructure evolution and laser moire interferometry

Tunga, Krishna Rajaram 08 July 2008 (has links)
This research aims to understand the reliability of Sn-Ag-Cu solder interconnects used in plastic ball grid array (PBGA) packages using microstructure evolution, laser moiré interferometry and finite-element modeling. A particle coarsening based microstructure evolution of the solder joint material during thermal excursions was studied for extended periods of time lasting for several months. The microstructure evolution and particle coarsening was quantified, and acceleration factors were determined between benign field-use conditions and accelerated thermal cycling (ATC) conditions for PBGA packages with different form factors and for two different lead-free solder alloys. A new technique using laser moiré interferometry was developed to assess the deformation behavior of Sn-Ag-Cu based solder joints during thermal excursions. This technique can used to estimate the fatigue life of solder joints quickly in a matter of few days instead of months and can be extended to cover a wide range of temperature regimes. Finite-element analysis (FEA) in conjunction with experimental data from the ATC for different lead-free PBGA packages was used to develop a fatigue life model that can be used to predict solder joint fatigue life for any PBGA package. The proposed model will be able to predict the mean number of cycles required for crack initiation and crack growth rate in a solder joint.
17

A phenomenological and mechanistic study of fatigue under complex loading histories

Wong, Yat Khin January 2003 (has links)
[Truncated abstract. Please see pdf format for complete text.] Over the years much work has been done on studying sequence effects under multilevel loading. Yet, the underlying fatigue mechanisms responsible for such interactions are not fully understood. The study of fatigue under complex loading histories begins by investigating strain interaction effects arising from simple 2-step loading sequences. Fatigue for all investigations were conducted under uniaxial push-pull mode in strain-control. Fatigue is traditionally classified as either low or high cycle fatigue (LCF and HCF respectively). The boundary for LCF and HCF is not well-defined even though the fatigue life of LCF is typically dominated by crack “initiation”, while for HCF, fatigue life is usually dominated by stable crack growth. The terms LCF and HCF, apart from referring to the low and high number of fatigue cycles required for failure, also bear little physical meaning in terms of describing the state of fatigue imposed. As a result, conventional definitions of the two distinct regimes of fatigue are challenged and a new method of classifying the boundary between the two regimes of fatigue is proposed. New definitions are proposed and the terms plastically dominant fatigue (PDF) and elastically dominant fatigue (EDF) are introduced as suitable replacements for LCF and HCF respectively. PDF refers to the condition of a material undergoing significant reverse plasticity during cyclic loading, while for EDF, minimal reverse plasticity is experienced. Systematic testing of three materials, 316 L stainless steel, 6061-T6 aluminium alloy and 4340 high strength steel, was performed to fully investigate the cycle ratio trends and “damage” accumulation behaviour which resulted from a variety of loading conditions. Results from this study were carried over to investigate more complex multilevel loading sequences and possible mechanisms for interaction effects observed both under 2-step and multi-step sequences were proposed. Results showed that atypical cycle ratio trends could result from loading sequences which involve combinations of strain amplitudes from different fatigue regimes (i.e. PDF or EDF). Mean strain effects on fatigue life were also studied. The objective of this study was to identify regimes of fatigue which are significantly influenced by mean strains. Results indicated that mean strains affected EDF but not PDF. 2-step tests, similar to those performed in earlier studies were conducted to investigate the effects of mean strain on variable amplitude loading. Again, atypical cycle ratio trends were observed for loading sequences involving combinations of PDF and EDF. It is understood that fatigue crack growth interaction behaviour and mean stress effects are two dominant mechanisms which can be used to explain cycle ratio trends observed. The significance and importance of proper PDF/EDF definition and specification are also stressed. The study of fracture mechanics is an important component of any fatigue research. Fatigue crack growth in 4140 high strength steel CT specimens, under conditions of plane stress and plane strain were studied. In this investigation, the effects of R and overload ratios were also studied for both plane stress and plane strain conditions. Results indicate that differences in the point of crack “initiation” under both plane stress and plane strain conditions decrease with increasing load range, while the extent of crack retardation as a result of overloading, is greater under plane stress than plane strain conditions. The extent of crack growth retardation increases with decreasing R ratios and increasing overload ratios. The final phase of this project involves the proposal of two practical models used to predict cumulative “damage” and fatigue crack propagation in metals. The cumulative “damage” model proposed takes the form of a power law and the exponent which governs “damage” accumulation can easily be calculated by knowing the failure life, Nf, for a given strain or load level. Predictions for the “damage” model performed better when compared to other popular cumulative “damage” models. The second model proposed predicts fatigue crack growth behaviour from known monotonic and smooth specimen fatigue data. There are several benefits of having a model that can predict fatigue crack growth from monotonic and smooth specimen fatigue data: a) traditionally, engineers had to rely on expensive and time-consuming crack propagation tests to evaluate and select materials for maximum fatigue resistance, and b) monotonic and smooth specimen fatigue data are readily available. The crack propagation model is proposed to alleviate the material selection process by providing engineers a means to rapidly eliminate and narrow down selections for possible material candidates.
18

Modelling of solder interconnection's performance in photovoltaic modules for reliability prediction

Zarmai, Musa Tanko January 2016 (has links)
Standard crystalline silicon photovoltaic (PV) modules are designed to continuously convert solar energy into electricity for 25 years. However, the continual generation of electricity by the PV modules throughout their designed service life has been a concern. The key challenge has been the untimely fatigue failure of solder interconnections of solar cells in the modules due to accelerated thermo-mechanical degradation. The goal of this research is to provide adequate information for proper design of solar cell solder joint against fatigue failure through the study of cyclic thermo-mechanical stresses and strains in the joint. This is carried-out through finite element analysis (FEA) using ANSYS software to develop the solar cell assembly geometric models followed by simulations. Appropriate material constitutive model for solder alloy is employed to predict number of cycles to failure of solder joint, hence predicting its fatigue life. The results obtained from this study indicate that intermetallic compound thickness (TIMC); solder joint thickness (TSJ) and width (WSJ) have significant impacts on fatigue life of solder joint. The impacts of TIMC and TSJ are such that as the thicknesses increases solder joint fatigue life decreases. Conversely, as solder joint width (WSJ) increases, fatigue life increases. Furthermore, optimization of the joint is carried-out towards thermo-mechanical reliability improvement. Analysis of results shows the design with optimal parameter setting to be: TIMC -2.5μm, TSJ -20μm and WSJ -1000μm. In addition, the optimized model has 16,264 cycles to failure which is 18.82% more than the expected 13,688 cycles to failure of a PV module designed to last for 25 years.
19

Posouzení tepelně-mechanické únavy výfukového potrubí / Assessment of thermo-mechanical fatigue of exhaust manifold

Košťál, Josef January 2020 (has links)
Tato diplomová práce se zabývá posouzením tepelně-mechanické únavy výfukového potrubí. Nejprve byla provedena rešeršní studie, ve které je rozebrán fenomén tepelně-mechanické únavy. Byly prezentovány hlavní mechanismy poškození a přístupy k jejich modelování. Diskutována byla i specifická chování materiálu vystavenému tepelně-mechanickému zatěžování. Byl vypracován přehled vhodných modelů materiálu a modelů únavové životnosti společně s algoritmem predikce tepelně-mechanické únavy komponenty. Poté byl tento teoretický základ aplikován na praktický případ výfukového potrubí podléhajícího tepelně-mechanickému zatěžování. Dva tepelně závislé elasto-plastické modely materiálu byly nakalibrovány a validovány na základě experimentálních dat. Byl vytvořen diskretizovaný konečnoprvkový model sestavy výfukového potrubí. Model tepelných okrajových podmínek byl předepsán na základě výpočtů ustáleného sdruženého přestupu tepla. Slabě sdružená tepelně-deformační úloha byla vyřešena metodou konečných prvků pro oba modely materiálů. Bylo použito paradigma nesvázaného modelu únavy, které je vhodné pro nízkocyklovou únavu. Životnost byla tedy vyhodnocena jako součást post-procesoru. Použity byly dva modely únavové životnosti – energeticky založený model a deformačně založený model. Získané hodnoty životnosti byly porovnány vzhledem k použitým modelům materiálu a modelům únavové životnosti. Nakonec jsou diskutovány závěry této práce, oblasti dalšího výzkumu a navrženy možnosti na zlepšení použitých přístupů.
20

Deformation History and Load Sequence Effects on Cumulative Fatigue Damage and Life Predictions

Colin, Julie Anne January 2009 (has links)
No description available.

Page generated in 0.1219 seconds