1 |
A formal fault model for component based models of embedded systemsFischer, Marco January 2006 (has links)
Zugl.: Chemnitz, Techn. Univ., Diss., 2006
|
2 |
Erfassung und Kompensation von Fehlereffekten bei der statischen Kraftmessung mit monolithischen Nd:YAG-LaserkristallenHou, Lijian. Unknown Date (has links)
Universiẗat, Diss., 1999--Kassel.
|
3 |
Towards comparability in evaluating the fault tolerance of safety critical embedded softwareFreinatis, Stefan. Unknown Date (has links) (PDF)
Essen, University, Diss., 2005--Duisburg.
|
4 |
Three essays on the econometric analysis of high-frequency dataMalec, Peter 27 June 2013 (has links)
Diese Dissertation behandelt die ökonometrische Analyse von hochfrequenten Finanzmarktdaten. Kapitel 1 stellt einen neuen Ansatz zur Modellierung von seriell abhängigen positiven Variablen, die einen nichttrivialen Anteil an Nullwerten aufweisen, vor. Letzteres ist ein weitverbreitetes Phänomen in hochfrequenten Finanzmarktzeitreihen. Eingeführt wird eine flexible Punktmassenmischverteilung, ein maßgeschneiderter semiparametrischer Spezifikationstest sowie eine neue Art von multiplikativem Fehlermodell (MEM). Kapitel 2 beschäftigt sich mit dem Umstand, dass feste symmetrische Kerndichteschätzer eine geringe Präzision aufweisen, falls eine positive Zufallsvariable mit erheblicher Wahrscheinlichkeitsmasse nahe Null gegeben ist. Wir legen dar, dass Gammakernschätzer überlegen sind, wobei ihre relative Präzision von der genauen Form der Dichte sowie des Kerns abhängt. Wir führen einen verbesserten Gammakernschätzer sowie eine datengetriebene Methodik für die Wahl des geeigneten Typs von Gammakern ein. Kapitel 3 wendet sich der Frage nach dem Nutzen von Hochfrequenzdaten für hochdimensionale Portfolioallokationsanwendungen zu. Wir betrachten das Problem der Konstruktion von globalen Minimum-Varianz-Portfolios auf der Grundlage der Konstituenten des S&P 500. Wir zeigen auf, dass Prognosen, welche auf Hochfrequenzdaten basieren, im Vergleich zu Methoden, die tägliche Renditen verwenden, eine signifikant geringere Portfoliovolatilität implizieren. Letzteres geht mit spürbaren Nutzengewinnen aus der Sicht eines Investors mit hoher Risikoaversion einher. / In three essays, this thesis deals with the econometric analysis of financial market data sampled at intraday frequencies. Chapter 1 presents a novel approach to model serially dependent positive-valued variables realizing a nontrivial proportion of zero outcomes. This is a typical phenomenon in financial high-frequency time series. We introduce a flexible point-mass mixture distribution, a tailor-made semiparametric specification test and a new type of multiplicative error model (MEM). Chapter 2 addresses the problem that fixed symmetric kernel density estimators exhibit low precision for positive-valued variables with a large probability mass near zero, which is common in high-frequency data. We show that gamma kernel estimators are superior, while their relative performance depends on the specific density and kernel shape. We suggest a refined gamma kernel and a data-driven method for choosing the appropriate type of gamma kernel estimator. Chapter 3 turns to the debate about the merits of high-frequency data in large-scale portfolio allocation. We consider the problem of constructing global minimum variance portfolios based on the constituents of the S&P 500. We show that forecasts based on high-frequency data can yield a significantly lower portfolio volatility than approaches using daily returns, implying noticeable utility gains for a risk-averse investor.
|
5 |
A Formal Fault Model for Component-Based Models of Embedded SystemsFischer, Marco 14 May 2007 (has links) (PDF)
Der vierte Band der wissenschaftlichen Schriftenreihe Eingebettete Selbstorganisierende Systeme widmet sich der Entwicklung von Fehlermodellen für eingebettete, verteilte Multi – Prozessorsysteme.
Diese werden zu einem hierarchischen Netzwerk zur Steuerung von Flugzeugen (Avionik) verbunden und mehr und mehr im Automotive Bereich eingesetzt. Hier gilt es höchste Sicherheitsstandards einzuhalten und maximale Verfügbarkeit zu garantieren.
Herr Fischer integriert die Modellierung von möglichen Fehlern in den Entwurfsprozess. Auf Grundlage des π-Kalküls entwickelt Herr Fischer ein formales Fehlermodell, das eine einheitliche Modellierung von Fehlerfällen unterstützt. Dabei werden interessante Bezüge zur Bi-Simulation sowie zu Methoden des Modell Checkings hergestellt.
Die theoretischen Ergebnisse werden an einem komplexen Beispiel anschaulich illustriert. So kann der Leser die Mächtigkeit des entwickelten Ansatzes nachvollziehen und wird motiviert, die entwickelte Methodik auf weitere Anwendungsfälle zu übertragen. / The 4th volume of the scientific series Eingebettete, selbstorganisierende Systeme (Embedded Self-Organized Systems) outlines the design of fault models for embedded distributed multi processor systems. These multi processor systems will be connected to a hierarchical network to control airplanes (avionics) and also be used more and more in the automotive area. Here it is essential to meet highest safety standards and to ensure the maximum of availability. Mr Fischer integrates the modelling of potential faults into the design process. Based on the pi-calculus, he develops a formal framework, which supports a standardised modelling of faults. Thereby, interesting connections to the Bi-Simulation as well as to methods of the Model checking are established. The theoretical results are depicted on a complex example. So it is possible for the reader to understand the complexity of this approach and is motivated to use the developed methodology in other applications.
I am glad that Mr Fischer publishes his important research in this scientific series.
|
6 |
A Formal Fault Model for Component-Based Models of Embedded SystemsFischer, Marco 14 May 2007 (has links)
Der vierte Band der wissenschaftlichen Schriftenreihe Eingebettete Selbstorganisierende Systeme widmet sich der Entwicklung von Fehlermodellen für eingebettete, verteilte Multi – Prozessorsysteme.
Diese werden zu einem hierarchischen Netzwerk zur Steuerung von Flugzeugen (Avionik) verbunden und mehr und mehr im Automotive Bereich eingesetzt. Hier gilt es höchste Sicherheitsstandards einzuhalten und maximale Verfügbarkeit zu garantieren.
Herr Fischer integriert die Modellierung von möglichen Fehlern in den Entwurfsprozess. Auf Grundlage des π-Kalküls entwickelt Herr Fischer ein formales Fehlermodell, das eine einheitliche Modellierung von Fehlerfällen unterstützt. Dabei werden interessante Bezüge zur Bi-Simulation sowie zu Methoden des Modell Checkings hergestellt.
Die theoretischen Ergebnisse werden an einem komplexen Beispiel anschaulich illustriert. So kann der Leser die Mächtigkeit des entwickelten Ansatzes nachvollziehen und wird motiviert, die entwickelte Methodik auf weitere Anwendungsfälle zu übertragen. / The 4th volume of the scientific series Eingebettete, selbstorganisierende Systeme (Embedded Self-Organized Systems) outlines the design of fault models for embedded distributed multi processor systems. These multi processor systems will be connected to a hierarchical network to control airplanes (avionics) and also be used more and more in the automotive area. Here it is essential to meet highest safety standards and to ensure the maximum of availability. Mr Fischer integrates the modelling of potential faults into the design process. Based on the pi-calculus, he develops a formal framework, which supports a standardised modelling of faults. Thereby, interesting connections to the Bi-Simulation as well as to methods of the Model checking are established. The theoretical results are depicted on a complex example. So it is possible for the reader to understand the complexity of this approach and is motivated to use the developed methodology in other applications.
I am glad that Mr Fischer publishes his important research in this scientific series.
|
7 |
On Safe Usage of Shared Data in Safety-Critical Control SystemsJäger, Georg 16 September 2022 (has links)
Prognostiziert durch Konzepte der Industrie 4.0 und den Cyber-Physischen-Systemen, können autonome Systeme zukünftig dynamisch auf Datenquellen in ihrer Umgebung zugreifen.
Während die gemeinsame Nutzung solcher Datenquellen ein enormes Performanzpotenzial bietet, stellt die benötigte Systemarchitektur vorherrschende Sicherheitsprozesse vor neue Herausforderungen.
Die vorliegende Arbeit motiviert zunächst, dass diese nur zur Laufzeit des Systems adressiert werden könne, bevor sie daraus zwei zentrale Ziele ableitet und verfolgt.
Zum einen wird ein Beschreibungsmodel für die Darstellung von Fehlercharakteristika gemeinsam genutzter Daten vorgestellt.
Dieses generische Fehlermodell erlaubt es zum anderen eine Sicherheitsanalyse zu definieren, die eine spezifische, dynamische Systemkomposition zur Laufzeit mit Hinblick auf die zu erwartenden Unsicherheiten bewerten kann.
Die als Region of Safety betitelte Analysestrategie erlaubt, in Kombination mit dem generischen Fehlermodell, die Sicherheit der auf gemeinsam genutzten Daten basierenden Kollisionsvermeidungsstrategie zweier Roboter noch zur Designzeit zu garantieren, obwohl die spezifischen Fehlercharakteristika der Daten erst zur Laufzeit bekannt werden.:List of Acronyms
List of Theorems
List of Definitions
List of Figures
List of Tables
1. Introduction – Safety in Future Smart Industries
1.1. The Example of Smart Warehouses
1.2. Functional Safety Standards
1.2.1. Overview of Functional Safety Standards
1.2.2. IEC 61508
1.3. Scope of this Thesis
1.3.1. Objectives
1.3.2. Contributions
1.3.3. Outline
1.4. Related Publications by the Author
1.5. Mathematical Notation
2. State of the Art
2.1. State of the Art in Run-Time Safety Assessment
2.1.1. Approaches at the Functional Level
2.1.2. Approaches at the Technical Level
2.1.3. Conclusions
2.2. State of the Art in Failure Modeling
2.2.1. The Definition of (Sensor) Failure Model
2.2.2. Interval-Based Failure Modeling
2.2.3. Distribution-Based Failure Modeling
2.2.4. Failure-Type-Based Failure Modeling
2.2.5. Conclusions
2.3. Conclusions from the State of the Art
3. Generic Failure Model
3.1. Defining the Generic Failure Model
3.1.1. Time- and Value-Correlated Random Distribution
3.1.2. A Failure Type’s Failure Amplitudes
3.1.3. A Failure Type’s State Function
3.1.4. Polynomial Representation of a Failure Type
3.1.5. Discussion on the Fulfillment of the Predefined Criteria
3.2. Converting a Generic Failure Model to an Interval
3.2.1. Converting a Time- and Value-Correlated Random Distribution
3.2.2. A Failure Type’s Interval
3.3. Processing Chain for Generating Generic Failure Models
3.3.1. Identifying Failure Types
3.3.2. Parameterizing Failure Types
3.3.3. Confidence Calculation
3.4. Exemplary Application to Artificial Failure Characteristics
3.4.1. Generating the Artificial Data Set – Manually Designing GFMs
3.4.2. Identifying Failure Types
3.4.3. Parameterizing Failure Types
3.4.4. Confidence Calculation
3.4.5. Comparison to State-of-the-Art Models
3.5. Summary
4. Region of Safety
4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems
4.2. Regions of Safety for Dynamically Composed Systems
4.2.1. Estimating Regions of Attraction in Presence of Uncertainty
4.2.2. Introducing the Concept of Region of Safety
4.2.3. Discussion on the Fulfillment of the Predefined Criteria
4.3. Evaluating the Concept of Region of Safety
4.3.1. Defining the Scenario and Considered Uncertainties
4.3.2. Designing a Control Lyapunov Function
4.3.3. Determining an Appropriate Value for λc
4.3.4. The Effect of Varying Sensor Failures on Regions of Safety
4.4. Summary
5. Evaluation and Integration
5.1. Multi-Robot Collision Avoidance
5.1.1. Assumptions
5.1.2. Design of the Circle and Navigation Scenarios
5.1.3. Kinematics
5.1.4. Control Policy
5.1.5. Intention Modeling by Model Uncertainty
5.1.6. Fusing Regions of Safety of Multiple Stability Points
5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model
5.2.1. Data Acquisition
5.2.2. Failure Model Generation
5.2.3. Evaluating the Quality of the Failure Model
5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy
5.3.1. Configuration for Region of Safety Estimation
5.3.2. Estimating Regions of Safety
5.3.3. Evaluation Using the Circle Scenario
5.3.4. Evaluation Using the Navigation Scenario
5.4. Summary
6. Conclusions and Future Work
6.1. Summary
6.2. Limitations and Future Work
6.2.1. Limitations and Future Work on the Generic Failure Model
6.2.2. Limitations and Future Work on Region of Safety
6.2.3. Future Work on Safety in Dynamically Composed Systems
Appendices
A. Defining Factors of Risk According to IEC 61508
B. Evaluation Results for the Identification Stage
C. Overview of Failure Amplitudes of Marker Detection Results
Bibliography / The concepts of Cyber-Physical-Systems and Industry 4.0 prognosticate autonomous systems to integrate sources of shared data dynamically at their run-time.
While this promises substantial increases in their performance, the openness of the required system architecture poses new challenges to processes guaranteeing their safety.
This thesis firstly motivates that these can be addressed only at their run-time, before it derives and pursues two corresponding goals.
Firstly, a model for describing failure characteristics of shared data is presented.
Secondly, this Generic Failure Model is built upon to define a run-time safety assessment methodology that enables analyzing dynamic system compositions integrating shared data with respect to the expected uncertainties at run-time.
This analysis strategy, entitled Region of Safety, allows in combination with the generic failure model to guarantee the safety of robots sharing position data for collision avoidance already at design-time, although specific failure characteristics become available only at run-time.:List of Acronyms
List of Theorems
List of Definitions
List of Figures
List of Tables
1. Introduction – Safety in Future Smart Industries
1.1. The Example of Smart Warehouses
1.2. Functional Safety Standards
1.2.1. Overview of Functional Safety Standards
1.2.2. IEC 61508
1.3. Scope of this Thesis
1.3.1. Objectives
1.3.2. Contributions
1.3.3. Outline
1.4. Related Publications by the Author
1.5. Mathematical Notation
2. State of the Art
2.1. State of the Art in Run-Time Safety Assessment
2.1.1. Approaches at the Functional Level
2.1.2. Approaches at the Technical Level
2.1.3. Conclusions
2.2. State of the Art in Failure Modeling
2.2.1. The Definition of (Sensor) Failure Model
2.2.2. Interval-Based Failure Modeling
2.2.3. Distribution-Based Failure Modeling
2.2.4. Failure-Type-Based Failure Modeling
2.2.5. Conclusions
2.3. Conclusions from the State of the Art
3. Generic Failure Model
3.1. Defining the Generic Failure Model
3.1.1. Time- and Value-Correlated Random Distribution
3.1.2. A Failure Type’s Failure Amplitudes
3.1.3. A Failure Type’s State Function
3.1.4. Polynomial Representation of a Failure Type
3.1.5. Discussion on the Fulfillment of the Predefined Criteria
3.2. Converting a Generic Failure Model to an Interval
3.2.1. Converting a Time- and Value-Correlated Random Distribution
3.2.2. A Failure Type’s Interval
3.3. Processing Chain for Generating Generic Failure Models
3.3.1. Identifying Failure Types
3.3.2. Parameterizing Failure Types
3.3.3. Confidence Calculation
3.4. Exemplary Application to Artificial Failure Characteristics
3.4.1. Generating the Artificial Data Set – Manually Designing GFMs
3.4.2. Identifying Failure Types
3.4.3. Parameterizing Failure Types
3.4.4. Confidence Calculation
3.4.5. Comparison to State-of-the-Art Models
3.5. Summary
4. Region of Safety
4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems
4.2. Regions of Safety for Dynamically Composed Systems
4.2.1. Estimating Regions of Attraction in Presence of Uncertainty
4.2.2. Introducing the Concept of Region of Safety
4.2.3. Discussion on the Fulfillment of the Predefined Criteria
4.3. Evaluating the Concept of Region of Safety
4.3.1. Defining the Scenario and Considered Uncertainties
4.3.2. Designing a Control Lyapunov Function
4.3.3. Determining an Appropriate Value for λc
4.3.4. The Effect of Varying Sensor Failures on Regions of Safety
4.4. Summary
5. Evaluation and Integration
5.1. Multi-Robot Collision Avoidance
5.1.1. Assumptions
5.1.2. Design of the Circle and Navigation Scenarios
5.1.3. Kinematics
5.1.4. Control Policy
5.1.5. Intention Modeling by Model Uncertainty
5.1.6. Fusing Regions of Safety of Multiple Stability Points
5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model
5.2.1. Data Acquisition
5.2.2. Failure Model Generation
5.2.3. Evaluating the Quality of the Failure Model
5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy
5.3.1. Configuration for Region of Safety Estimation
5.3.2. Estimating Regions of Safety
5.3.3. Evaluation Using the Circle Scenario
5.3.4. Evaluation Using the Navigation Scenario
5.4. Summary
6. Conclusions and Future Work
6.1. Summary
6.2. Limitations and Future Work
6.2.1. Limitations and Future Work on the Generic Failure Model
6.2.2. Limitations and Future Work on Region of Safety
6.2.3. Future Work on Safety in Dynamically Composed Systems
Appendices
A. Defining Factors of Risk According to IEC 61508
B. Evaluation Results for the Identification Stage
C. Overview of Failure Amplitudes of Marker Detection Results
Bibliography
|
Page generated in 0.2214 seconds