• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 42
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 184
  • 53
  • 53
  • 33
  • 33
  • 25
  • 23
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Remoção de fósforo por adição de cloreto férrico em reator anaeróbio de manta de lodo (UASB) seguido de reator aeróbio seqüencial em batelada (RSB) / Phosphorus removal by adding ferric chloride in upflow anaerobic sludge blanket (UASB) followed by aerobic sequential batch reactor (RSB)

Marçal Júnior, Emerson 19 November 2001 (has links)
Um sistema de tratamento de esgotos sanitários por reator UASB seguido de RSB foi operado durante 27 semanas objetivando-se verificar seu desempenho na remoção de matéria orgânica carbônácea, nitrogênio amoniacal e fósforo. O reator UASB, com 145 litros foi operado com tempo de detenção hidráulica médio de 8 horas durante todo o experimento. O reator RSB, de 106 litros, foi operado com tempos de ciclio de 24, 12 e 6 horas, em seis etapas distintas. Os tempos de ciclo no RSB variaram de 24, 12, 6, 24, 24 e 24 para as etapas 1, 2, 3, 4, 5 e 6 respectivamente. As últimas três etapas foram caracterizadas pela adição de cloreto férrico, respectivamente. O sistema UASB/RSB apresentou eficiência média de remoção de DQO de 92% nas etapas 1, 2, 5, e 6. Na etapa 3, com tempo de ciclo de 6 horas e na etapa 4, quando o RSB recebeu 50mg/L de cloreto férrico, a eficiência média de remoção de DQO foi de 83%. Quando FeCl3 foi adicionado no afluente do reator UASB, obteve-se excelente desempenho na remoção de fósforo, cujas concentrações afluentes foram da ordem de 1,0 mg/L e 4,0 mg/L para a adição de 200 e 100 mg/L de cloreto férrico, respectivamente. / The performance evaluation of a pilot scale system composed by a UASB reactor followed by an SBR reactor treating domestic sewage is presented. The UASB reactor with 145 L of volume, was operated with an average hydraulic detention period of 8 hours. The SBR reactor had a volume of 106 litters being operated with cyclic time of 24, 12, and 6 hours. These different operational conditions characterized three stages of the work from a total of six stages. The three last stages were the addition of 50, 100, and 200 mg/L of ferric chloride in the aerobic, anaerobic, and anaerobic reactors, respectively. In the three last stages the UASB reactor worked with an average hydraulic detention time of 8 hours and the aerobic reactor worked with a cyclic time of 24 hours. After 27 weeks of continuous operation, the UASB/SBR system produced very good results in terms of COD removal. The average results of the COD removal were of 92% to the first, second, fifth, and sixth stages, having a reduction to 83% on the average to the stages where the SBR received 50 mg/L of ferric chloride and in which it worked with a six hour cyclic period. The addition of ferric chloride in the anaerobic reactor had great efficiency in the phosphorus removal. It was reached absolute values of until 1 mg/L of PO43- in the aflluent of the system, promoting an average effluent of 4 mg/L of PO43- with the addition 200 mg/L of FCl3. The UASB/SBR system can become a very promising alternative for domestic sewerage treatment in Brazil, since the system can be projected with shorter times of hydraulic detention times, resulting in a low cost compact installation. Furthermore, excellent results can be gotten to the ammonium and phosphorus removal.
52

Spectrophotometric determination of aluminium oxide, calcium oxide and iron (III) oxide in Portland cement.

January 1993 (has links)
Shu King-hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 80-81). / ABSTRACT --- p.1 / Chapter CHAPTER I. --- INTRODUCTION --- p.3 / REFERENCES --- p.6 / Chapter CHAPTER II. --- BRIEF REVIEW OF THE ANALYTICAL METHODS USED / Chapter 1. --- Spectrophotometry --- p.8 / Chapter 2. --- Derivative spectrophotometry --- p.9 / Chapter 3. --- Atomic absorption spectrometry --- p.12 / Chapter 4. --- X - Ray fluorescence --- p.12 / REFERENCES --- p.14 / Chapter CHAPTER III. --- SIMULTANEOUS DETERMINATION OF ALUMINIUM OXIDE AND IRON (III) OXIDE / Chapter 1. --- Introduction / Review of the reported methods --- p.15 / Determination of aluminium and iron with / 8-hydroxyquinoline --- p.18 / Chapter 2. --- Experimental --- p.21 / Chapter 3. --- Results and discussion / Determination of iron --- p.28 / Determination of aluminium --- p.38 / Chapter 4. --- Conclusion --- p.52 / REFERENCES --- p.53 / Chapter CHAPTER IV. --- RAPID DETERMINATION OF CALCIUM OXIDE / Chapter 1. --- Introduction --- p.56 / Chapter 2. --- Experimental --- p.62 / Chapter 3. --- Results and discussion --- p.66 / Chapter 4. --- Conclusion --- p.79 / REFERENCES --- p.80 / FIGURES / Chapter II-1 --- Attenuation of a beam of radiation by an absorbing solution --- p.8 / Chapter II-2 --- Gaussian curve and its first to fourth derivatives --- p.11 / Chapter III-l --- Effect of pH on the extraction of metals with8- hydroxyquinoline --- p.19 / Chapter III-2 --- "Normal absorbance spectra of the metal - oxinates: A1 (5ppm), Fe (5ppm)" --- p.20 / Chapter III-3 --- Effect of pH on the determination of iron (5ppm) --- p.29 / Chapter III-4 --- Calibration curve for the determination of iron (III) by spectrophotometry at 580 nm --- p.33 / Chapter III-5 --- "The first derivative spectra of metal-oxinates A1: 5ppm, Fe : 5ppm" --- p.39 / Chapter III-6 --- "The second derivative spectra of metal-oxinates, A1: 5ppm, Fe : 5ppm" --- p.39 / Chapter III-7 --- "Normal absorption spectra of the metal-oxinates : A1(5 ppm), Ti (5 ppm)" --- p.41 / Chapter III-8 --- Effect of pH on the determination of aluminium --- p.43 / Chapter III-9 --- Calibration curve for the determination of aluminium by second derivative spectrophotometry at 390 nm --- p.47 / Chapter IV-1 --- "Effect of pH on the development of colour of Ca- GBHA complex. Ca : 1.2 ppm, wavelength : 530 nm" --- p.68
53

Adsorption of trace metals by hydrous ferric oxide in seawater.

Swallow, K. C. (Kathleen C.) January 1978 (has links)
Thesis. 1978. Ph.D. cn--Massachusetts Institute of Technology. Dept. of Chemistry. / Includes bibliographical references. / Ph.D.cn
54

Otimização de processos de precipitação química na remoção de fósforo de esgotos sanitários mediante a utilização de sais de ferro como coagulante. / Chemical precipitation optimization of phosphorus from domestic wastewater with a ferric salts as coagulant.

Fernanda Ferrari Gualberto 25 May 2009 (has links)
A presente pesquisa teve como objetivo a otimização de processos de precipitação química na remoção de fósforo de esgotos sanitários mediante a utilização de sais de ferro como coagulante. Analisou-se a remoção de matéria orgânica e produção de lodo obtidas. O trabalho foi desenvolvido com efluentes provenientes de duas estações de tratamento da SABESP, sendo elas a ETE Barueri lodos ativados convencional e ETE Ribeirão Pires tratamento anaeróbio com reatores UASB. Os ensaios de Jar-Test foram conduzidos em laboratório e o coagulante utilizado foi o cloreto férrico. Os resultados obtidos demonstram que a dosagem do coagulante, em ambos os efluentes estudados, resulta na remoção de fósforo total a valores inferiores a 1 mg/L. As dosagens de coagulante necessárias foram de 80 mg/L para a ETE Barueri e 60 mg/L para a ETE Ribeirão Pires. A remoção de carga orgânica também foi alcançada e valores de DBO5,20 inferiores a 10 mg/L são obtidos com dosagens inferiores às necessárias para a remoção de fósforo. A dosagem de coagulante necessária para a remoção de DBO5,20 a valores inferiores a 10 mg/L foi de 40 mg/L. A produção de lodo é o principal problema encontrado quando se utiliza precipitação química, a quantidade de lodo produzida é significativa e deve ser levada em consideração no dimensionamento do sistema de tratamento e disposição final. Incrementos na produção de lodo da ordem de 113% foram obtidos para a ETE Barueri e 51% para a ETE Ribeirão Pires quando foram consideradas as dosagens de coagulante necessárias a remoção de fósforo totais a valores inferiores a 1 mg/L. / The aim of the present study was the chemical precipitation optimization of phosphorus from domestic wastewater with a ferric salt as coagulant. The organic matter removal and the sludge production obtained were analyzed. The study was developed with effluents from two wastewater plants from SABESP, such as ETE Barueri conventional activated sludge and ETE Ribeirão Pires anaerobic treatment with UASB reactors. Jar-Test tests were done in laboratory and the coagulant used was the ferric chloride. The results show that the coagulant dosage, in both effluents studied, results in a total phosphorus removal to values lower than 1 mg/L. The necessary coagulant dosages were 80 mg/L to ETE Barueri and 60 mg/L to ETE Ribeirão Pires. The organic matter removal also was obtained and values of BOD lower than 10 mg/L are obtained to lower dosages than the necessary dosage to phosphorus removal. The necessary coagulant dosage to BOD removal to values lower than 10 mg/L was 40 mg/L. The sludge production is the main problem when chemical precipitation is used, the amount of sludge produced is significant and must be taken into consideration in the system project of treatment and final disposal. Increases in the sludge production were around 113% to ETE Barueri and 51% to ETE Ribeirão Pires when the necessary coagulants dosages were considered to total phosphorus removal to values lower than 1 mg/L.
55

Electrochemically enhanced ferric lithium manganese phosphate / multi-walled carbon nanotube, as a possible composite cathode material for lithium ion battery

Sifuba, Sabelo January 2019 (has links)
>Magister Scientiae - MSc / Lithium iron manganese phosphate (LiFe0.5Mn0.5PO4), is a promising, low cost and high energy density (700 Wh/kg) cathode material with high theoretical capacity and high operating voltage of 4.1 V vs. Li/Li+, which falls within the electrochemical stability window of conventional electrolyte solutions. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of its electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion at the surface of the LiFe0.5Mn0.5PO4 particles. Nanostructured materials offered advantages of a large surface to volume ratio, efficient electron conducting pathways and facile strain relaxation. The LiFe0.5Mn0.5PO4 nanoparticles were synthesized via a simple-facile microwave method followed by coating with multi-walled carbon nanotubes (MWCNTs) nanoparticles to enhance electrical and thermal conductivity. The pristine LiFe0.5Mn0.5PO4 and LiFe0.5Mn0.5PO4-MWCNTs composite were examined using a combination of spectroscopic and microscopic techniques along with electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Microscopic results revealed that the LiFe0.5Mn0.5PO4-MWCNTs composite contains well crystallized particles and regular morphological structures with narrow size distributions. The composite cathode exhibits better reversibility and kinetics than the pristine LiFe0.5Mn0.5PO4 due to the presence of the conductive additives in the LiFe0.5Mn0.5PO4-MWCNTs composite. For the composite cathode, D = 2.0 x 10-9 cm2/s while for pristine LiFe0.5Mn0.5PO4 D = 4.81 x 10-10 cm2/s. The charge capacity and the discharge capacity for LiFe0.5Mn0.5PO4-MWCNTs composite were 259.9 mAh/g and 177.6 mAh/g, respectively, at 0.01 V/s. The corresponding values for pristine LiFe0.5Mn0.5PO4 were 115 mAh/g and 44.75 mAh/g, respectively. This was corroborated by EIS measurements. LiFe0.5Mn0.5PO4-MWCNTs composite showed to have better conductivity which corresponded to faster electron transfer and therefore better electrochemical performance than pristine LiFe0.5Mn0.5PO4. The composite cathode material (LiFe0.5Mn0.5PO4-MWCNTs) with improved electronic conductivity holds great promise for enhancing electrochemical performances and the suppression of the reductive decomposition of the electrolyte solution on the LiFe0.5Mn0.5PO4 surface. This study proposes an easy to scale-up and cost-effective technique for producing novel high-performance nanostructured LiFe0.5Mn0.5PO4 nano-powder cathode material. / 2023-12-01
56

Expression of virulence factors in pathogenic Escherichia coli /

Rashid, Rebecca Ann. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 98-113).
57

Investigations of the Physical and Analytical Chemistry of Iron in Aqueous Solutions

Patten, James 12 November 2014 (has links)
Although iron occurs at extremely low concentrations in the world’s oceans, it is essential for all living organisms. It is the limiting nutrient in High Nutrient Low Chlorophyll (HNLC) areas of the ocean, and exerts critically important influences on levels of atmospheric CO2 and the global carbon cycle. Understanding the chemical processes that govern the fluxes and biogeochemistry of oceanic iron requires thorough assessment of the aqueous physical chemistry of iron and analytical techniques capable of measuring iron at sub-nanomolar concentration measurements. This dissertation extends prior work on the physical and analytical chemistry of iron through (a) investigation of the complexation of iron by silicate in aqueous solutions, (b) investigation the solubility of ferric hydroxide using spectrophotometric procedures over a wide range of pH (c) utilization of novel in-situ instrumentation for iron measurements in seawater. Previous investigations of ferric iron complexation by silicate ions (SiO(OH)-3) included no measurements at ionic strengths greater than 0.15 molal and produced formation constant estimates at zero ionic strength that differed by more than a factor of two. In this work ferric silicate formation constants were measured at ionic strengths of 0.1, 0.3 and 0.7 molal by ultraviolet absorbance spectroscopy. The dependence of the ferric silicate formation constant on ionic strength at 25° C, summarized using the Bronsted-Guggenheim-Scatchard specific ion interaction (SIT) model, indicated that the ionic strength dependence of the ferric silicate formation constant, (written as Si ∗β1 = [FeSiO(OH)23+][H+][Fe3+]-1[Si(OH)04]-1) can be expressed as: log Si *β1 = (-0.125 ± 0.042) - (2.036 I0.5)/(1+ 1.5I0.5) + (0.588 ± 0.094) I. The result obtained at zero ionic strength is in good agreement with the average result obtained in four previous studies, but with a substantially reduced level of uncertainty. The solubility of ferric iron in aqueous sodium perchlorate solutions at the ionic strength of seawater was determined by use of novel automated spectrophotometric procedures. Two colorimetric measurement chemistries were utilized to measure dissolved ferric iron concentrations in equilibrium with precipitated amorphous ferric hydroxide over a range of pH between 4.0 and 12.0. Soluble iron concentrations decreased from approximately 3.2 micromolar at pH 4.0 to subnanomolar levels between pH 7.5 and 9.5, and rose to approximately 0.1 micromolar at pH 12. The results of this investigation were in good agreement with solubility results obtained in previous investigations of iron solubility in seawater at circumneutral pH, and previous results obtained in sodium chloride at high pH, but differed from previous results obtained in sodium chloride between pH 7 and pH 9. In view of the agreement between solubility results obtained in seawater and sodium perchlorate (this work) and, in contrast, results in sodium chloride that were more than an order of magnitude lower than were obtained in seawater and sodium perchlorate, it is advisable that further solubility investigations are performed in sodium chloride solutions. The iron measurement procedures developed for the investigation of ferric iron solubility were incorporated in an in situ spectrophotometric instrument. The Spectrophometric Elemental Analysis System (SEAS) utilizes long pathlength absorbance spectrometry (LPAS) combined with colorimetric protocols to achieve the sensitivity required to measure analytes at nanomolar concentration levels. The M-SEAS was initially tested on cruises in the Eastern Gulf of Mexico in June 2013 and November 2013. Due to limited opportunity for deployments of M-SEAS during these cruises, iron concentration data was obtained from only three casts. During these casts the heater pressure vessel flooded due to a compromised seal, causing the temperature of both channels to be strongly affected by ambient seawater. Further measurements of iron with the M-SEAS instrument in profiling mode will require an engineering analysis and redesign of the faulty seal. The international GEOTRACES program has stated that an improved understanding of the biogeochemical cycles and largescale distributions of trace-elements and isotopes will inform many areas of environmental research, from climate science to planning for future global change. As the only instrument currently capable of continuous in situ measurements of iron, the M-SEAS instrument should greatly enhance capabilities for investigation of iron biogeochemistry.
58

Preparation and properties of granular ferric hydroxide as an adsorbent in potable water treatment

Newton, Nichola January 2002 (has links)
Three iron oxide materials have been studied for uptake of three anions (arsenate, phosphate and fluoride) and a cation (cadmium) from aqueous solutions. Two of the materials were produced using original procedures developed at Loughborough University. The former material was conditioned by a controlled freeze-thaw procedure to enhance granularity and the latter was air-dried at room temperature. Their capacities were compared with a commercially available material supplied by GEH Wasserchemle, Germany. Pore size distributions and specific surface area values were determined by N2 analysis at 77 K. All samples possessed a reasonable specific surface area, in the range 200-300 m2/g and were mesoporous. Samples produced at Loughborough University also contained some macropores, evidence of a more amorphous structure or lack of pH control during production. X-ray diffraction indicated that all samples had some b-FeOOH present and that the chloride content and production pH affected the material crystallinity. Crystallinity increased with increasing chloride content and a higher production pH resulted in the presence of more than one phase. Chemical characterisation was also completed on all three samples. The point of zero net proton charge and isoelectric point for each material was obtained by potentiometric batch titrations and zeta potential measurements respectively. The difference in these values increased with a higher chloride content and all samples studied possessed a positive surface at low pH and negative surface at high pH. These parameters were not greatly affected by the background electrolyte concentration, implying that the background electrolyte is not specifically adsorbed. However, arsenate and phosphate appeared to be specifically adsorbed as the isoelectric point decreased. The uptake capacities for arsenate, phosphate. fluoride and cadmium of all three samples were obtained by measuring batch isotherms at 25 degrees C. The pH range was 4-9, using various initial concentrations up to a maximum of approximately 30 uM. For all anionic species studied, the capacity decreased with increasing pH, and the reverse trend was noted for cadmium. The Langmuir model provided a good fit for the anionic isotherms and the Freundlich model for the cationic isotherms. The materials studied possessed a markedly higher capacity for fluoride than arsenate and phosphate, with an intermediate capacity for cadmium. This indicates that fluoride is attached to the surface via monodentate (single) bonds, whilst both arsenate and phosphate are primarily attached to the surface via bidentate (two) bonds. Cadmium is probably bound by both these mechanisms. The effect of competing anions on arsenic uptake capacity was determined using mini-column experiments of binary (arsenate-fluoride, arsenate-Phosphate and phosphate-fluoride) and ternary (arsenate-fluoride-phosphate) mixtures. Arsenate removal was strongly affected by the presence of phosphate, but was only slightly lower in the presence of fluoride. (Continues...).
59

FT-IR studies on partial oxidation of methane over ferric molybdate catalysts /

Fuangfoo, Surajit. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 105-108). Also available on the Internet.
60

FT-IR studies on partial oxidation of methane over ferric molybdate catalysts

Fuangfoo, Surajit. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 105-108). Also available on the Internet.

Page generated in 0.0272 seconds