• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 11
  • 11
  • 11
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferromagnetische Resonanzabsorption von reinen und mit Wasserstoff, Sauerstoff oder Palladium bedeckten ultradünnen Eisenfilmen

Wiechmann, Bodo, January 1982 (has links)
Thesis (Doctoral)--Universität Hannover, 1982.
2

Verfahren zur Messung von Farbschichtdicken in Druckwerken mittels ferromagnetischer Resonanz

Fetter, Jan January 2009 (has links)
Zugl.: Darmstadt, Techn. Univ., Diss., 2009
3

Spin dynamics and transport in magnetic heterostructures

Schneider, Tobias 16 April 2019 (has links)
The direct integration of magnon-spintronic devices in current technologies requires the development of spin-wave sources emitting ultra-short wavelengths and low-loss spin-wave guides. In this work, possible solutions for both of these challenges are provided. The first part of this thesis is dedicated to the nonreciprocal spin-wave emission in magnetic bilayers. Two prototype systems are theoretically investigated and corroborated by experimental results: (i) extended magnetic bilayer films and (ii) micron-sized elliptical magnetic bilayers. The nonreciprocity of the dispersion relation induced by the dynamic dipole-dipole interactions is investigated by means of micromagnetic simulations and an analytic theory. The nonreciprocal frequency shift linearly increases with the film thickness for small wave numbers. The topological emission of short-wavelength spin waves is observed in the micron-sized elliptical magnetic bilayers using scanning transmission X-ray microscopy and theoretically corroborated utilizing micromagnetic simulations. The second part of this thesis theoretically investigates a special spin transport mechanism in ferromagnetic thin films termed spin superfluidity. The main characteristic of this macroscopic state is the power-law dependence of the dissipated spin current in contrast to the exponential damping of spin waves, enabling low-loss long-range transport. The possible existence and the stability of the superfluidic transport in ferromagnetic thin films excited by spin-transfer torque in the presence of the intrinsic dipole-dipole interactions is reported for the first time. To provide indicators to prove the experimental realization of a spin superfluid the dependence on the excitation current is numerically analyzed. Three distinct regimes are obtained for both disabled and enabled dipole-dipole interactions, showing the generality of the investigated system. Both presented effects might open new paths for the technological application of magnonic devices in the future. / Die direkte Integration von magnon-spintronischen Bauteilen in moderne Technologien erfordert die Entwicklung von kurzwelligen Spinwellenquellen und verlustarmer Spinwellenleiter. In dieser Arbeit werden mögliche Lösungen für diese beiden Herausforderungen vorgestellt. Der erste Teil dieser Arbeit beschäftigt sich mit der nichtreziproken Spinwellenemission in magnetischen Doppellagen. Zwei Prototypsysteme werden theoretisch untersucht und durch experimentelle Ergebnisse untermauert: (i) ausgedehnte magnetische Doppellagen und (ii) mikrometer-große elliptische Doppellagen. Durch die dynamischen Dipol-Dipol-Wechselwirkungen wird eine Nichtreziprozität der Dispersionsrelation induziert. Diese wird mittels mikromagnetischer Simulationen und einer analytischen Theorie untersucht. Die nichtreziproke Frequenzverschiebung nimmt hierbei bei kleinen Wellenzahlen linear mit der Filmdicke zu. Die topologische Emission von Spinwellen wird in den mikrometer-großen elliptischen Doppellagen unter Verwendung von Röntgentransmissionsmikroskopie beobachtet und theoretisch unter Verwendung mikromagnetischer Simulationen bestätigt. Im zweiten Teil dieser Arbeit wird der spezielle Spintransport in ferromagnetischen dünnen Filmen untersucht, der als Spinsuprafluidität bekannt ist. Das Hauptmerkmal dieses makroskopischen Zustands ist die Abhängigkeit des dissipierten Spinstromes von der Propagationslänge als Potenzgesetz im Gegensatz zur exponentiellen Dämpfung von Spinwellen. Die Existenz und die Stabilität des suprafluiden Transportes in dünnen ferromagnetischen Filmen, angeregt durch einen spinpolarisierten Strom, in Gegenwart der intrinsischen Dipol-Dipol-Wechselwirkungen wird erstmals beschrieben. Um Hinweise für die experimentelle Realisierung der Spinsuprafluidität zu geben, wird die Abhängigkeit des Zustandes vom Anregungsstrom numerisch analysiert. Hierbei ergeben sich drei verschiedene Bereiche für den Fall vernachlässigter als auch aktivierter Dipol-Dipol-Wechselwirkung. Dies zeigt die Allgemeinheit des untersuchten Systems. Die beiden vorgestellten Effekte könnten in Zukunft neue Wege für die technologische Anwendung magnonischer Strukturen eröffnen.
4

Spin Waves: The Transition from a Thin Film to a Full Magnonic Crystal

Langer, Manuel 23 October 2017 (has links) (PDF)
The present work addresses in-depth magnetic films with magnonic surface patterning of variable size. Two different kinds of such structures referred to as surface-modulated magnonic crystals were investigated: Ion-irradiated magnonic crystals and structurally etched magnonic crystals. To achieve that, two different experimental approaches were pursued. On the one hand, the magnetic moment at the surface of lithographically patterned permalloy (Ni80Fe20) films was periodically reduced by means of ion irradiation. On the other hand, structural trenches were introduced at the surface of a pre-patterned thin film by sequential ion milling. The goal is the acquisition of a fundamental understanding of the behavior of spin-wave modes in the transition from a continuous magnetic thin film to a full magnonic crystal, i.e. separated periodic magnetic structures. In the framework of this thesis, the spin-wave eigen-modes of such magnonic crystals were mainly investigated spectroscopically by means of ferromagnetic resonance. Thereby, the “Two-magnon scattering perturbation theory” and the “plane-wave method” were employed as the theoretical methodologies to understand the complex dynamics of such systems. The first is a reliable method to calculate the dynamic response of surface-modulated magnonic crystals where the modulation is of a perturbation character, i.e. small compared to the film thickness. The latter is a quasi-analytical approach to calculate the dynamic eigen-modes of magnonic crystals consisting of different components with significantly varying properties. Moreover, numerical methods were employed to get further insight into the spin dynamics of these structures. In such systems, the spin-wave behavior follows the well-known dispersion relation of flat magnetic thin films as long as the surface-modulation is small compared to the film thickness. In this work, it was shown that this circumstance can be exploited for a parameter-free determination of the exchange constant A, which is not experimentally accessible for magnetic thin films in a straightforward manner. However, once the modulation height is of significant magnitude, the dynamics of surface-modulated magnonic crystals become substantially more complex. A straightforward understanding of such kind of system is hampered by the complex interplay of different effects. On the one hand, the internal demagnetizing field reveals an alternating character and depends itself on the modulation height and the field angle. On the other hand, the dynamic eigen-modes are hybridized, i.e., they reveal different characteristics in different regions of the magnonic crystal and, in addition, they couple to each other. Here, the approach is particularly favorable to investigate the spin dynamics of surface-modulated magnonic crystals by systematically altering the modulation height of the same sample. This is mainly due to two reasons. First, the two edge cases, namely the thin film and the full magnonic crystal, are already well understood and, second, other magnetic and structural parameters remain constant. With the help of the measurement results and the simulations, the quasi-analytical theory was validated. Subsequently, the mode profiles were calculated by theory and simulation in order to analyze the mode character in the transition from a thin film to a full magnonic crystal. Two kinds of dynamic eigen-modes were identified, namely hybridized modes and localized modes. For both types, simple formulae were derived describing their characteristic dynamic behavior. Besides, transition rules were found connecting the mode number n of film modes with the mode number m of modes in the full magnonic crystal. In order to correlate the symmetry and magnitude of the demagnetizing field with the spin-wave eigen-modes, the internal fields of a strongly surface-modulated magnonic crystal were reconstructed by electron holography measurements. By reemploying the measurement results for micromagnetic simulations, the dynamics of the whole system could be reproduced. This strategy allowed for a better understanding of the link between the demagnetizing field and the spin-wave mode characteristics. Based on these results, a simplified model for the analytical description of the inplane angular dependence was found. The acquired understanding of such systems led to the elaboration of specific applications, such as the spin-wave channelization. It should be noted that the coupling of uniform to non-uniform spin-wave phenomena, which is an intrinsic property of these structures, holds out the prospect of several applications in the future.
5

Spin Waves: The Transition from a Thin Film to a Full Magnonic Crystal

Langer, Manuel 31 July 2017 (has links)
The present work addresses in-depth magnetic films with magnonic surface patterning of variable size. Two different kinds of such structures referred to as surface-modulated magnonic crystals were investigated: Ion-irradiated magnonic crystals and structurally etched magnonic crystals. To achieve that, two different experimental approaches were pursued. On the one hand, the magnetic moment at the surface of lithographically patterned permalloy (Ni80Fe20) films was periodically reduced by means of ion irradiation. On the other hand, structural trenches were introduced at the surface of a pre-patterned thin film by sequential ion milling. The goal is the acquisition of a fundamental understanding of the behavior of spin-wave modes in the transition from a continuous magnetic thin film to a full magnonic crystal, i.e. separated periodic magnetic structures. In the framework of this thesis, the spin-wave eigen-modes of such magnonic crystals were mainly investigated spectroscopically by means of ferromagnetic resonance. Thereby, the “Two-magnon scattering perturbation theory” and the “plane-wave method” were employed as the theoretical methodologies to understand the complex dynamics of such systems. The first is a reliable method to calculate the dynamic response of surface-modulated magnonic crystals where the modulation is of a perturbation character, i.e. small compared to the film thickness. The latter is a quasi-analytical approach to calculate the dynamic eigen-modes of magnonic crystals consisting of different components with significantly varying properties. Moreover, numerical methods were employed to get further insight into the spin dynamics of these structures. In such systems, the spin-wave behavior follows the well-known dispersion relation of flat magnetic thin films as long as the surface-modulation is small compared to the film thickness. In this work, it was shown that this circumstance can be exploited for a parameter-free determination of the exchange constant A, which is not experimentally accessible for magnetic thin films in a straightforward manner. However, once the modulation height is of significant magnitude, the dynamics of surface-modulated magnonic crystals become substantially more complex. A straightforward understanding of such kind of system is hampered by the complex interplay of different effects. On the one hand, the internal demagnetizing field reveals an alternating character and depends itself on the modulation height and the field angle. On the other hand, the dynamic eigen-modes are hybridized, i.e., they reveal different characteristics in different regions of the magnonic crystal and, in addition, they couple to each other. Here, the approach is particularly favorable to investigate the spin dynamics of surface-modulated magnonic crystals by systematically altering the modulation height of the same sample. This is mainly due to two reasons. First, the two edge cases, namely the thin film and the full magnonic crystal, are already well understood and, second, other magnetic and structural parameters remain constant. With the help of the measurement results and the simulations, the quasi-analytical theory was validated. Subsequently, the mode profiles were calculated by theory and simulation in order to analyze the mode character in the transition from a thin film to a full magnonic crystal. Two kinds of dynamic eigen-modes were identified, namely hybridized modes and localized modes. For both types, simple formulae were derived describing their characteristic dynamic behavior. Besides, transition rules were found connecting the mode number n of film modes with the mode number m of modes in the full magnonic crystal. In order to correlate the symmetry and magnitude of the demagnetizing field with the spin-wave eigen-modes, the internal fields of a strongly surface-modulated magnonic crystal were reconstructed by electron holography measurements. By reemploying the measurement results for micromagnetic simulations, the dynamics of the whole system could be reproduced. This strategy allowed for a better understanding of the link between the demagnetizing field and the spin-wave mode characteristics. Based on these results, a simplified model for the analytical description of the inplane angular dependence was found. The acquired understanding of such systems led to the elaboration of specific applications, such as the spin-wave channelization. It should be noted that the coupling of uniform to non-uniform spin-wave phenomena, which is an intrinsic property of these structures, holds out the prospect of several applications in the future.
6

Morphology-Induced Magnetic Phenomena Studied by Broadband Ferromagnetic Resonance

Körner, Michael 05 November 2013 (has links) (PDF)
In the present work, the influence of the morphology of thin ferromagnetic films on their static as well as dynamic magnetic properties was investigated by means of broadband ferromagnetic resonance (FMR). Using an ion beam erosion process the surface of the substrates was periodically modulated (ripples), where the modulation wavelength is determined by the ion energy. In this way a well-controllable roughness profile evolves ranging from a few ten up to several hundreds of nanometers in wavelength. The substrate’s surface profile in turn is repeated by films grown on top offering an easy and fast approach to investigate morphology influences on the magnetic properties. This work aims on modifications of the magnetic anisotropy as well as the FMR linewidth of the magnetic relaxation process. Prior to magnetic investigations the existing FMR setup was extended to measure FMR spectra at a fixed microwave frequency while sweeping the external magnetic field. Furthermore, a software toolbox was developed to perform the data processing and evaluation. Starting with the morphology influence on the magnetic anisotropy 10 nm thin Fe, Co, and Ni81Fe19 (Permalloy ≡ Py) films were deposited on rippled Si substrates. Due to Si displacements during ion erosion and natural oxidation the rippled Si substrates exhibit an amorphous surface causing a polycrystalline material growth. This leads to a suppression of magneto-crystalline anisotropy leaving only morphology-induced anisotropy contributions. Here, a uniaxial magnetic anisotropy (UMA) was observed that aligns its easy axis with the ripple ridges, whereas its strength decays with increasing ripple wavelength for all materials. From thickness-dependent measurements two characteristic regions were determined with competing uniaxial volume and surface anisotropy contributions. Underlined by micromagnetic simulations a dominant volume contribution was found in the thin region accompanied by magnetic moments nearly following the surface corrugation. In the thick region the UMA is controlled by dipolar stray fields at the surface. In contrast to Si, ion eroded MgO keeps its crystal structure offering epitaxial growth of 10 nm thin single-crystalline Fe films. Consequently, a superposition of morphology-induced UMA and magneto-crystalline cubic anisotropy was observed. The direction of the ripple ridges is predetermined by the incident ion beam, which allows to freely orient the UMA’s direction with respect to the cubic anisotropy, offering a possibility for anisotropy engineering. In comparison to the planar reference case rippled magnetic films exhibit lower intrinsic and extrinsic relaxation contributions. For the final part, 30 nm Py was grown on rippled Si covering modulation wavelengths λ ranging from 27 to 432 nm. Using magnetic force microscopy and holography measurements the dipolar stray fields above and inside the magnetic layer were characterized. For λ ≥ 222 nm, the stray fields act as scattering centers for spin waves triggering two-magnon scattering (TMS). This causes an apparent line broadening generating distinct peaks in the frequency-dependent linewidth whose position can be tuned by altering λ. These effects are understood in the framework of a perturbation theory of spin waves in periodically perturbed films recently presented in the literature. Furthermore, the in-plane angular dependence of the linewidth revealed a two-fold symmetry, which is not present for vanishing TMS at small λ. / In Rahmen dieser Arbeit wurde der Einfluss der Morphologie eines dünnen ferromagnetischen Films auf dessen statische und dynamische Eigenschaften mittels breitbandiger ferromag- netischer Resonanz (FMR) untersucht. Durch Ionenstrahl-Erosion wurde die Oberfläche des verwendeten Substrats periodisch moduliert (Ripple), wobei die Wellenlänge der Modulation durch die Ionenenergie bestimmt ist. Dies ermöglicht die kontrollierte Herstellung rauer Oberflächen mit Wellenlängen zwischen wenigen zehn bis zu einigen hundert Nanometern. Werden auf diesen Oberflächen Filme abgeschieden, übernehmen diese die Modulation. Somit ergibt sich eine einfache und schnelle Untersuchungsmöglichkeit der magnetischen Filmeigenschaften in Hinblick auf die Morphologie. Das Ziel dieser Arbeit ist die Untersuchung von Morphologieeinflüssen auf die magnetische Anisotropie sowie FMR-Linienbreite. Im Vorfeld der magnetischer Untersuchungen wurde der bestehende FMR-Aufbau um einen Messmodus erweitert, sodass Messungen bei fester Mikrowellenfrequenz und gleichzeitigem Durchfahren eines externen magnetischen Feldes möglich wurden. Weiterhin wurde ein Softwarepaket für die Datenauswertung entwickelt. Beginnend mit dem Morphologieeinfluss auf die magnetische Anisotropie wurden 10 nm dünne Fe, Co und Ni81Fe19 (Permalloy ≡ Py) Filme auf periodisch moduliertem Si abgeschieden. Durch Versetzungen während der Ionenstrahl-Erosion und Bildung einer natürlichen Oxidschicht bildet sich bei den verwendeten Substraten eine amorphe Oberfläche, was zu polykristallinem Schichtwachstum führt. Dadurch wird die magneto-kristalline Anisotropie unterdrückt und morphologie-induzierte Beiträge bestimmen die Anisotropie. Beobachtet wurde eine induzierte uniaxiale magnetische Anisotropie (UMA), deren leichte Richtung sich entlang der Ripple-Wellenzüge ausrichtet. Mittels schichtdickenabhängigen Messungen wurden zwei charakteristische Regionen mit konkurrierender uniaxialer Volumen- und Oberflächenanisotropie ermittelt. Dabei ist die Volumenkomponente im Bereich dünner Schichten vorherrschend und die magnetischen Momente richten sich entlang der Oberflächenmodulation aus. Für dickere Schichten ist die UMA dahingegen durch dipolare Streufelder bestimmt. Die experimentellen Funde werden in beiden Bereichen durch mikromagnetische Simulationen untermauert. Im Gegensatz zu erodiertem Si behält MgO seine Kristallstruktur, was epitaktisch gewachsene, einkristalline Fe-Schichten von 10 nm Dicke ermöglicht. Folglich wurde eine Überlagerung aus induzierter und kristalliner Anisotropie beobachtet. Dadurch, dass die Richtung der Ripple durch die Richtung des Ionenstrahls während der Erosion vorgegeben wird, lässt sich die UMA frei gegen die kristalline Anisotropie drehen, was wiederum Möglichkeiten zur gezielten Beeinflussung der Anisotropie bietet. Im Hinblick auf die dynamischen magnetischen Eigenschaften führen Ripple zu einer Verringerung der intrinsischen und extrinsischen Relaxationsbeiträge. Für den letzten Teil der Arbeit wurde 30 nm dünnes Py auf Si-Ripple gewachsen, wobei ein Wellenlängenbereich von λ = 27 nm bis 432 nm abgedeckt wurde. Mit Hilfe von magnetischer Kraftmikroskopie und Holographie wurden die dipolaren Streufelder über und in den Filmen untersucht. Ab λ ≥ 222 nm ermöglichen diese dipolaren Felder eine Streuung von Spinwellen, sodass Zwei-Magnonen-Streuung (TMS) auftritt. Dies führt zu einer scheinbaren Linienverbreiterung und äußert sich durch einzelne Peaks in der frequenzabhängigen Linienbreite. Letztere lassen sich in ihrer Frequenzposition durch die Wellenlänge des Substrates beeinflussen und können mittels einer kürzlich in der Literatur veröffentlichten Störungstheorie für Spinwellen in periodisch gestörten Filmen erklärt werden. Weiterhin wurde in der winkelabhängigen Linienbreite eine zweifache Symmetrie beobachtet, welche durch die TMS hervorgerufen wird und folglich nicht bei kleinen Wellenlängen zu beobachten ist.
7

Morphology-Induced Magnetic Phenomena Studied by Broadband Ferromagnetic Resonance

Körner, Michael 02 September 2013 (has links)
In the present work, the influence of the morphology of thin ferromagnetic films on their static as well as dynamic magnetic properties was investigated by means of broadband ferromagnetic resonance (FMR). Using an ion beam erosion process the surface of the substrates was periodically modulated (ripples), where the modulation wavelength is determined by the ion energy. In this way a well-controllable roughness profile evolves ranging from a few ten up to several hundreds of nanometers in wavelength. The substrate’s surface profile in turn is repeated by films grown on top offering an easy and fast approach to investigate morphology influences on the magnetic properties. This work aims on modifications of the magnetic anisotropy as well as the FMR linewidth of the magnetic relaxation process. Prior to magnetic investigations the existing FMR setup was extended to measure FMR spectra at a fixed microwave frequency while sweeping the external magnetic field. Furthermore, a software toolbox was developed to perform the data processing and evaluation. Starting with the morphology influence on the magnetic anisotropy 10 nm thin Fe, Co, and Ni81Fe19 (Permalloy ≡ Py) films were deposited on rippled Si substrates. Due to Si displacements during ion erosion and natural oxidation the rippled Si substrates exhibit an amorphous surface causing a polycrystalline material growth. This leads to a suppression of magneto-crystalline anisotropy leaving only morphology-induced anisotropy contributions. Here, a uniaxial magnetic anisotropy (UMA) was observed that aligns its easy axis with the ripple ridges, whereas its strength decays with increasing ripple wavelength for all materials. From thickness-dependent measurements two characteristic regions were determined with competing uniaxial volume and surface anisotropy contributions. Underlined by micromagnetic simulations a dominant volume contribution was found in the thin region accompanied by magnetic moments nearly following the surface corrugation. In the thick region the UMA is controlled by dipolar stray fields at the surface. In contrast to Si, ion eroded MgO keeps its crystal structure offering epitaxial growth of 10 nm thin single-crystalline Fe films. Consequently, a superposition of morphology-induced UMA and magneto-crystalline cubic anisotropy was observed. The direction of the ripple ridges is predetermined by the incident ion beam, which allows to freely orient the UMA’s direction with respect to the cubic anisotropy, offering a possibility for anisotropy engineering. In comparison to the planar reference case rippled magnetic films exhibit lower intrinsic and extrinsic relaxation contributions. For the final part, 30 nm Py was grown on rippled Si covering modulation wavelengths λ ranging from 27 to 432 nm. Using magnetic force microscopy and holography measurements the dipolar stray fields above and inside the magnetic layer were characterized. For λ ≥ 222 nm, the stray fields act as scattering centers for spin waves triggering two-magnon scattering (TMS). This causes an apparent line broadening generating distinct peaks in the frequency-dependent linewidth whose position can be tuned by altering λ. These effects are understood in the framework of a perturbation theory of spin waves in periodically perturbed films recently presented in the literature. Furthermore, the in-plane angular dependence of the linewidth revealed a two-fold symmetry, which is not present for vanishing TMS at small λ. / In Rahmen dieser Arbeit wurde der Einfluss der Morphologie eines dünnen ferromagnetischen Films auf dessen statische und dynamische Eigenschaften mittels breitbandiger ferromag- netischer Resonanz (FMR) untersucht. Durch Ionenstrahl-Erosion wurde die Oberfläche des verwendeten Substrats periodisch moduliert (Ripple), wobei die Wellenlänge der Modulation durch die Ionenenergie bestimmt ist. Dies ermöglicht die kontrollierte Herstellung rauer Oberflächen mit Wellenlängen zwischen wenigen zehn bis zu einigen hundert Nanometern. Werden auf diesen Oberflächen Filme abgeschieden, übernehmen diese die Modulation. Somit ergibt sich eine einfache und schnelle Untersuchungsmöglichkeit der magnetischen Filmeigenschaften in Hinblick auf die Morphologie. Das Ziel dieser Arbeit ist die Untersuchung von Morphologieeinflüssen auf die magnetische Anisotropie sowie FMR-Linienbreite. Im Vorfeld der magnetischer Untersuchungen wurde der bestehende FMR-Aufbau um einen Messmodus erweitert, sodass Messungen bei fester Mikrowellenfrequenz und gleichzeitigem Durchfahren eines externen magnetischen Feldes möglich wurden. Weiterhin wurde ein Softwarepaket für die Datenauswertung entwickelt. Beginnend mit dem Morphologieeinfluss auf die magnetische Anisotropie wurden 10 nm dünne Fe, Co und Ni81Fe19 (Permalloy ≡ Py) Filme auf periodisch moduliertem Si abgeschieden. Durch Versetzungen während der Ionenstrahl-Erosion und Bildung einer natürlichen Oxidschicht bildet sich bei den verwendeten Substraten eine amorphe Oberfläche, was zu polykristallinem Schichtwachstum führt. Dadurch wird die magneto-kristalline Anisotropie unterdrückt und morphologie-induzierte Beiträge bestimmen die Anisotropie. Beobachtet wurde eine induzierte uniaxiale magnetische Anisotropie (UMA), deren leichte Richtung sich entlang der Ripple-Wellenzüge ausrichtet. Mittels schichtdickenabhängigen Messungen wurden zwei charakteristische Regionen mit konkurrierender uniaxialer Volumen- und Oberflächenanisotropie ermittelt. Dabei ist die Volumenkomponente im Bereich dünner Schichten vorherrschend und die magnetischen Momente richten sich entlang der Oberflächenmodulation aus. Für dickere Schichten ist die UMA dahingegen durch dipolare Streufelder bestimmt. Die experimentellen Funde werden in beiden Bereichen durch mikromagnetische Simulationen untermauert. Im Gegensatz zu erodiertem Si behält MgO seine Kristallstruktur, was epitaktisch gewachsene, einkristalline Fe-Schichten von 10 nm Dicke ermöglicht. Folglich wurde eine Überlagerung aus induzierter und kristalliner Anisotropie beobachtet. Dadurch, dass die Richtung der Ripple durch die Richtung des Ionenstrahls während der Erosion vorgegeben wird, lässt sich die UMA frei gegen die kristalline Anisotropie drehen, was wiederum Möglichkeiten zur gezielten Beeinflussung der Anisotropie bietet. Im Hinblick auf die dynamischen magnetischen Eigenschaften führen Ripple zu einer Verringerung der intrinsischen und extrinsischen Relaxationsbeiträge. Für den letzten Teil der Arbeit wurde 30 nm dünnes Py auf Si-Ripple gewachsen, wobei ein Wellenlängenbereich von λ = 27 nm bis 432 nm abgedeckt wurde. Mit Hilfe von magnetischer Kraftmikroskopie und Holographie wurden die dipolaren Streufelder über und in den Filmen untersucht. Ab λ ≥ 222 nm ermöglichen diese dipolaren Felder eine Streuung von Spinwellen, sodass Zwei-Magnonen-Streuung (TMS) auftritt. Dies führt zu einer scheinbaren Linienverbreiterung und äußert sich durch einzelne Peaks in der frequenzabhängigen Linienbreite. Letztere lassen sich in ihrer Frequenzposition durch die Wellenlänge des Substrates beeinflussen und können mittels einer kürzlich in der Literatur veröffentlichten Störungstheorie für Spinwellen in periodisch gestörten Filmen erklärt werden. Weiterhin wurde in der winkelabhängigen Linienbreite eine zweifache Symmetrie beobachtet, welche durch die TMS hervorgerufen wird und folglich nicht bei kleinen Wellenlängen zu beobachten ist.
8

Magnetostatics and Dynamics of Ion Irradiated NiFe/Ta Multilayer Films Studied by Vector Network Analyzer Ferromagnetic Resonance

Markó, Daniel 31 January 2011 (has links) (PDF)
In the present work, the implications of ion irradiation on the magnetostatic and dynamic properties of soft magnetic Py/Ta (Py = Permalloy: Ni80Fe20) single and multilayer films have been investigated with the main objective of finding a way to determine their saturation magnetization. Both polar magneto-optical Kerr effect (MOKE) and vector network analyzer ferromagnetic resonance (VNA-FMR) measurements have proven to be suitable methods to determine µ0MS, circumventing the problem of the unknown effective magnetic volume that causes conventional techniques such as SQUID or VSM to fail. Provided there is no perpendicular anisotropy contribution in the samples, the saturation magnetization can be determined even in the case of strong interfacial mixing due to an inherently high number of Py/Ta interfaces and/or ion irradiation with high fluences. Another integral part of this work has been to construct a VNA-FMR spectrometer capable of performing both azimuthal and polar angle-dependent measurements using a magnet strong enough to saturate samples containing iron. Starting from scratch, this comprised numerous steps such as developing a suitable coplanar waveguide design, and writing the control, evaluation, and fitting software. With both increasing ion fluence and number of Py/Ta interfaces, a decrease of saturation magnetization has been observed. In the case of the 10×Py samples, an immediate decrease of µ0MS already sets in at small ion fluences. However, for the 1×Py and 5×Py samples, the saturation magnetization remains constant up to a certain ion fluence, but then starts to rapidly decrease. Ne ion irradiation causes a mixing and broadening of the interfaces. Thus, the Py/Ta stacks undergo a transition from being polycrystalline to amorphous at a critical fluence depending on the number of interfaces. The saturation magnetization is found to vanish at a Ta concentration of about 10–15 at.% in the Py layers. The samples possess a small uniaxial anisotropy, which remains virtually unaffected by the ion fluence, but slightly reduces with an increasing number of Py/Ta interfaces. In addition to magnetostatics, the dynamic properties of the samples have been investigated as well. The Gilbert damping parameter α increases with both increasing number of Py/Ta interfaces and higher ion fluences, with the former having a stronger influence. The inhomogeneous linewidth broadening ΔB0 increases as well with increasing number of Py/Ta interfaces, but slightly decreases for higher ion fluences. / In dieser Dissertation ist der Einfluss von Ionenbestrahlung auf die magnetostatischen und dynamischen Eigenschaften von weichmagnetischen Py/Ta-Einzel- und Multilagen (Py = Permalloy: Ni80Fe20) untersucht worden, wobei das Hauptziel gewesen ist, eine Methode zur Bestimmung der Sättigungsmagnetisierung zu finden. Sowohl polare magneto-optische Kerr-Effektmessungen (MOKE) als auch ferromagnetische Resonanzmessungen mittels eines Vektornetzwerkanalysators (VNA-FMR) haben sich als geeignet erwiesen, um µ0MS zu bestimmen, wobei das Problem des unbekannten effektiven magnetischen Volumens umgangen wird, welches bei der Verwendung von Techniken wie SQUID oder VSM auftreten würde. Unter der Voraussetzung, dass die Proben keinen senkrechten magnetischen Anisotropiebeitrag besitzen, kann die Sättigungsmagnetisierung selbst im Fall starker Grenzflächendurchmischung infolge einer großen Anzahl an Py/Ta-Grenzflächen und/oder Ionenbestrahlung mit hohen Fluenzen bestimmt werden. Ein weiterer wesentlicher Bestandteil dieser Arbeit ist die Konstruktion eines VNA-FMR-Spektrometers gewesen, welches vollautomatisiert ist, polare und azimutale Winkelabhängigkeiten messen kann und einen Magneten besitzt, der Proben, die Eisen beinhalten, sättigen kann. Von Grund auf beginnend umfasste dies zahlreiche Schritte wie z. B. die Entwicklung eines geeigneten koplanaren Wellenleiterdesigns sowie das Schreiben von Steuerungs-, Auswertungs- und Fitprogrammen. Mit steigender Fluenz und Zahl an Py/Ta-Grenzflächen ist eine Abnahme der Sättigungsmagnetisierung beobachtet worden. Im Fall der 10×Py-Proben findet diese bereits bei kleinen Fluenzen statt. Im Gegensatz dazu bleibt µ0MS der 1×Py- und 5×Py-Proben bis zu einer bestimmten Fluenz konstant, bevor sie sich dann umso schneller verringert. Die Bestrahlung mit Ne-Ionen verursacht eine Durchmischung und Verbreiterung der Grenzflächen. Infolgedessen erfahren die Py/Ta-Proben bei einer kritischen Fluenz, die von der Zahl der Grenzflächen abhängig ist, einen Phasenübergang von polykristallin zu amorph. Die Sättigungsmagnetisierung verschwindet ab einer Ta-Konzentration von etwa 10–15 Atom-% in den Py-Schichten. Die Proben besitzen eine kleine uniaxiale Anisotropie, die praktisch unbeeinflusst von der Fluenz ist, sich jedoch mit steigender Zahl an Py/Ta-Grenzflächen leicht verringert. Neben den statischen sind auch die dynamischen magnetischen Eigenschaften der Proben untersucht worden. Der Gilbert-Dämpfungsparameter α erhöht sich sowohl mit steigender Zahl an Py/Ta-Grenzflächen als auch mit höheren Fluenzen, wobei Erstere einen größeren Einfluss hat. Die inhomogene Linienverbreiterung ΔB0 nimmt ebenfalls mit steigender Zahl an Py/Ta-Grenzflächen zu, verringert sich jedoch bei größeren Fluenzen leicht.
9

Magnetisierungsdynamik weichmagnetischer Dünnschichten mit modifizierter magnetischer Mikrostruktur / Magnetization dynamics of soft magnetic thin films with modified magnetic microstructure

Hengst, Claudia 12 March 2014 (has links) (PDF)
Abschlussdomänenstrukturen in strukturierten weichmagnetischen dünnen Schichten wurden systematisch hinsichtlich ihrer Domänenweite, Domänenmagnetisierungsrichtung, Domänenwandtypen und Wandlängen modifiziert. Somit konnte ein umfassendes Verständnis über die Beeinflussungsmöglichkeiten des dynamischen Magnetisierungsverhaltens von Abschlussdomänenkonfigurationen im GHz-Bereich erarbeitet werden. Ein bekanntes Modell zur Berechnung der akustischen Domänenresonanzfrequenz von 180° -Domänenkonfigurationen wurde unter Berücksichtigung von Abschlussdomänen und endlichen effektiven Domänenwandweiten erfolgreich erweitert. Damit ist eine präzise Vorhersage des dynamischen Verhaltens von 180° - Abschlussdomänenstrukturen möglich. Außerdem wurde aufgezeigt, dass über die Messung der ferromagnetischen Resonanz Domänenwandumwandlungen im Magnetfeld detektiert werden können. Für Strukturen mit angepasster Anisotropie wurde unabhängig von der Anisotropiestärke eine konstante akustische Resonanzfrequenz beobachtet. Dieser unerwartete Zusammenhang wird auf die kompensatorischeWirkung von Abschlussdomänenstrukturen zurückgeführt. Abschließend wird gezeigt, dass für sogenannte Bucklingdomänenstrukturen eine signifikant größere Beeinflussung der ferromagnetischen Resonanzfrequenz durch vergleichsweise kleine statische Magnetfelder erzielt werden kann, als dies bei homogen magnetisierten Strukturen und Schichten der Fall ist. Die vorgestellten Ergebnisse dieser Arbeit zeigen, dass über eine Einstellung der ferromagnetischen Domänenstruktur das dynamische Verhalten weichmagnetischer strukturierter Schichten über einen vergleichsweise breiten Frequenzbereich hinweg gezielt modifiziert werden kann.
10

Magnetisierungsdynamik weichmagnetischer Dünnschichten mit modifizierter magnetischer Mikrostruktur

Hengst, Claudia 18 December 2013 (has links)
Abschlussdomänenstrukturen in strukturierten weichmagnetischen dünnen Schichten wurden systematisch hinsichtlich ihrer Domänenweite, Domänenmagnetisierungsrichtung, Domänenwandtypen und Wandlängen modifiziert. Somit konnte ein umfassendes Verständnis über die Beeinflussungsmöglichkeiten des dynamischen Magnetisierungsverhaltens von Abschlussdomänenkonfigurationen im GHz-Bereich erarbeitet werden. Ein bekanntes Modell zur Berechnung der akustischen Domänenresonanzfrequenz von 180° -Domänenkonfigurationen wurde unter Berücksichtigung von Abschlussdomänen und endlichen effektiven Domänenwandweiten erfolgreich erweitert. Damit ist eine präzise Vorhersage des dynamischen Verhaltens von 180° - Abschlussdomänenstrukturen möglich. Außerdem wurde aufgezeigt, dass über die Messung der ferromagnetischen Resonanz Domänenwandumwandlungen im Magnetfeld detektiert werden können. Für Strukturen mit angepasster Anisotropie wurde unabhängig von der Anisotropiestärke eine konstante akustische Resonanzfrequenz beobachtet. Dieser unerwartete Zusammenhang wird auf die kompensatorischeWirkung von Abschlussdomänenstrukturen zurückgeführt. Abschließend wird gezeigt, dass für sogenannte Bucklingdomänenstrukturen eine signifikant größere Beeinflussung der ferromagnetischen Resonanzfrequenz durch vergleichsweise kleine statische Magnetfelder erzielt werden kann, als dies bei homogen magnetisierten Strukturen und Schichten der Fall ist. Die vorgestellten Ergebnisse dieser Arbeit zeigen, dass über eine Einstellung der ferromagnetischen Domänenstruktur das dynamische Verhalten weichmagnetischer strukturierter Schichten über einen vergleichsweise breiten Frequenzbereich hinweg gezielt modifiziert werden kann.:1. Einleitung 2. Grundlagen 2.1. Magnetische Energieterme 2.1.1. Austauschenergie 2.1.2. Zeeman-Energie 2.1.3. Magnetostatische Energie 2.1.4. Anisotropie 2.2. Magnetische Mikrostrukturen 2.2.1. Domänenwände 2.3. Magnetisierungsdynamik 2.3.1. Magnetodynamik gesättigter strukturierter Schichten 2.3.2. Magnetodynamik ungesättigter magnetischer Strukturen 3. Experimentelles 3.1. Magnetooptische Domänenbeobachtung 3.2. Magnetische Rasterkraftmikroskopie 3.3. Hysteresemessung 3.4. Dynamische Charakterisierung 3.4.1. Gepulste Mikrowellen-Magnetometrie 3.4.2. Messung der ferromagnetischen Resonanz mit dem Vektor-Netzwerkanalysator 3.5. Mikromagnetische Simulationen 4. Eigenschaften ausgedehnter Referenzschichten 5. Magnetisierungsdynamik modifizierter 180-Grad-Domänenstrukturen 5.1. Erzeugung magnetischer Mikrostrukturen unterschiedlicher Domänenweite 5.2. Magnetisierungsdynamik modifizierter 180°-Grad-Domänenstrukturen im Nullfeld 5.2.1. Effekt der Abschlussdomänen 5.2.2. Effekt kleiner Domänenwandweiten 5.3. Domänenresonanz im magnetischen Feld 5.3.1. Transversales Magnetfeld 5.3.2. Longitudinales Magnetfeld 6. Dynamischer Kompensationseffekt magnetischer Domänen in strukturierten Schichten 7. Magnetisierungsdynamik von Bucklingdomänenstrukturen 7.1. Statisches Magnetisierungsverhalten linsenförmiger Elemente 7.2. Magnetisierungsdynamik linsenförmiger Elemente 7.2.1. Mikromagnetische Simulation der Bucklingstruktur 7.2.2. Diskussion der Magnetisierungsdynamik der Bucklingstruktur 8. Zusammenfassung und Ausblick A. Magnetometrische Entmagnetisierungsfaktoren nach Aharoni B. Ballistische Entmagnetisierungsfaktoren nach Aharoni C. Herleitung der akustischen Domänenresonanzfrequenz im transversalen Feld

Page generated in 0.1111 seconds