• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Équation homologique et classification analytique des germes de champs de vecteurs holomorphes de type noeud-col

JEAN DIT TEYSSIER, Loïc 29 September 2003 (has links) (PDF)
J'ai principalement étudié la classification des champs de vecteurs holomorphes Z , ayant une singularité isolée en (0,0) de type noeud-col, sous l'action des changements de coordonnées holomorphes locaux. On montre comment celle-ci se réduit à l'étude de deux équations homologiques, une pour la classification du feuilletage sous-jacent et l'autre pour la classification du flot à feuilletage fixé. On complète ainsi les invariants fonctionnels dégagés par Martinet/Ramis pour les feuilletages. Les invariants de classification expriment les obstructions à l'existence d'une fonction holomorphe F solution d'une équation du type Z(F)=G . En intégrant le second membre selon des chemins tangents à Z , on localise ces obstructions dans la non-nullité de certaines intégrales le long de cycles asymptotiques. Cette approche géométrique se distingue des méthodes utilisées par Meshcheryakova/Voronin pour obtenir indépendament et à la même époque un résultat similaire, en particulier puisqu'elle permet de donner une représentation intégrale "naturelle" aux invariants de Martinet/Ramis. En estimant ces quantités on dégage finalement de nombreuses classes explicites de champs (et d'équations différentielles) mutuellement non conjugué(e)s, alors que dans d'autre cas on peut donner des formes normales.

Page generated in 0.0615 seconds