Spelling suggestions: "subject:"feuillets holomorphic"" "subject:"feuilletons holomorphic""
1 |
Espaces de modules analytiques de fonctions non quasi-homogènes / Analytic moduli spaces of non quasi-homogeneous functionsLoubani, Jinan 27 November 2018 (has links)
Soit f un germe de fonction holomorphe dans deux variables qui s'annule à l'origine. L'ensemble zéro de cette fonction définit un germe de courbe analytique. Bien que la classification topologique d'un tel germe est bien connue depuis les travaux de Zariski, la classification analytique est encore largement ouverte. En 2012, Hefez et Hernandes ont résolu le cas irréductible et ont annoncé le cas de deux components. En 2015, Genzmer et Paul ont résolu le cas des fonctions topologiquement quasi-homogènes. L'objectif principal de cette thèse est d'étudier la première classe topologique de fonctions non quasi-homogènes. Dans le deuxième chapitre, nous décrivons l'espace local des modules des feuillages de cette classe et nous donnons une famille universelle de formes normales analytiques. Dans le même chapitre, nous prouvons l'unicité globale de ces formes normales. Dans le troisième chapitre, nous étudions l'espace des modules de courbes, qui est l'espace des modules des feuillages à une équivalence analytique des séparatrices associées près. En particulier, nous présentons un algorithme pour calculer sa dimension générique. Le quatrième chapitre présente une autre famille universelle de formes normales analytiques, qui est globalement unique aussi. En effet, il n'ya pas de modèle canonique pour la distribution de l'ensemble des paramètres sur les branches. Ainsi, avec cette famille, nous pouvons voir que la famille précédente n'est pas la seule et qu'il est possible de construire des formes normales en considérant une autre distribution des paramètres. Enfin, pour la globalisation, nous discutons dans le cinquième chapitre une stratégie basée sur la théorie géométrique des invariants et nous expliquons pourquoi elle ne fonctionne pas jusqu'à présent. / Let f be a germ of holomorphic function in two variables which vanishes at the origin. The zero set of this function defines a germ of analytic curve. Although the topological classification of such a germ is well known since the work of Zariski, the analytical classification is still widely open. In 2012, Hefez and Hernandes solved the irreducible case and announced the two components case. In 2015, Genzmer and Paul solved the case of topologically quasi-homogeneous functions. The main purpose of this thesis is to study the first topological class of non quasi-homogeneous functions. In chapter 2, we describe the local moduli space of the foliations in this class and give a universal family of analytic normal forms. In the same chapter, we prove the global uniqueness of these normal forms. In chapter 3, we study the moduli space of curves which is the moduli space of foliations up to the analytic equivalence of the associated separatrices. In particular, we present an algorithm to compute its generic dimension. Chapter 4 presents another universal family of analytic normal forms which is globally unique as well. Indeed, there is no canonical model for the distribution of the set of parameters on the branches. So, with this family, we can see that the previous family is not the only one and that it is possible to construct normal forms by considering another distribution of the parameters. Finally, concerning the globalization, we discuss in chapter 5 a strategy based on geometric invariant theory and explain why it does not work so far.
|
2 |
Mouvement brownien appliqué à l'étude de la dynamique des feuilletages transversalement holomorphesHussenot, Nicolas 13 December 2012 (has links) (PDF)
Dans cette thèse, j'ai tenté d'obtenir des informations sur la dynamique des feuilletages transversalement holomorphes par une approche probabiliste: le mouvement brownien. J'obtiens principalement deux résultats: le premier dit que, dans un feuilletage transversalement holomorphe minimalisable de codimension un complexe, presque tout point du bord (topologique) d'une composante connexe F de l'ensemble de Fatou est un point d'accumulation de toutes les feuilles de F. Le second résultat concerne les feuilletages de Riccati du plan projectif complexe: tout germe d'holonomie d'un tel feuilletage entre deux droites projectives complexes se prolonge le long de presque toute trajectoire brownienne.
|
3 |
Connexions plates logarithmiques de rang deux sur le plan projectif complexeCousin, Gaël 04 October 2012 (has links) (PDF)
Dans cette thèse on étudie les propriétés des connexions plates logarithmiques de rang 2 et leurs projectifies qui sont des feuilletages de Riccati, principalement sur le plan projectif. L'invariant principal d'un tel objet est sa représentation de monodromie, qui est une représentation vers SL2(C) ou PSL2(C) du groupe fondamental du complémentaire de son lieu polaire. Dans un premier temps, on étudie la propriété, pour un feuilletage de Riccati sur P2, d'être obtenu en tirant un en arrière un feuilletage de Riccati au dessus d'une courbe. Ensuite on s'intéresse aux feuilletages de Riccati qui ne sont pas construits de cette maniere et qui peuvent être obtenus a partir d'une solution algébrique de l'équation de Painleve VI. Nous les classons par orbites sous le groupe de Galois de Q ̄ sur Q. Finalement, on s'int ́eresse aux feuilletages transversalement projectifs : ces feuilletages s'obtiennent par restriction de feuilletages de Riccati a' des sections de leurs P1-fibres sous-jacents. On s'interesse particulierement aux feuilletages modulaires de Hilbert, dont on decrit assez finement la structure transverse. On conclut notre travail par l'exhibition de modeles birationnels sur P2 pour certains feuilletages modulaires de Hilbert.
|
4 |
Deux applications de la positivité à l'étude des variétés projectives complexesHöring, Andreas 08 December 2006 (has links) (PDF)
Dans cette thèse, nous étudions deux problèmes très naturels en géométrie algébrique complexe.<br />La première question étudiée est de savoir si le revêtement universel d'une variété kählérienne lisse compacte avec un fibré tangent décomposé est un produit de deux variétés. A l'aide des familles couvrantes de courbes rationnelles nous montrons que certaines variétés avec un fibré tangent décomposé possèdent une structure d'espace fibré. Une étude systématique nous permet de donner une réponse affirmative à la question pour plusieurs classes de variétés.<br />La deuxième question étudiée est de savoir si la positivité d'un fibré en droites implique la positivité de l'image directe, par un morphisme projectif et plat, du fibré en droites adjoint. La réponse à cette question dépend de la positivité du fibré en droites et de ses liens avec la géométrie du morphisme considéré. Nous donnons une réponse positive à la question sous de faibles conditions géométriques.
|
Page generated in 0.0786 seconds