31 |
Effect of Composition on Adhesion Strength Between Particle Filled Composite and Fiber Reinforced Composite. / Vliv složení na pevnost adheze mezi částicovými a vláknovými kompozity.Trautmann, Radoslav January 2010 (has links)
Disertační práce se zabývala vlivem adheze mezi vláknovým (FRC) a částicovým (PFC) kompozitem a složením obou komponent na mechanické vlastnosti a způsob porušování modelových bi-materiálových kompozitních těles při statickém namáhání. Zkoumán byl také vliv způsobu přípravy bi-materiálového kompozitního tělesa na pevnost adheze mezi jeho kompozitními komponentami. K hodnocení mechanických vlastností bi-materiálových PFC/FRC těles byl použit jak 3 tak 4-bodový ohybový test za pokojové teploty a relativní vlhkosti 70%. Modifikovaný vytrhávací test byl použit k měření smykové pevnosti adheze mezi vláknovým a částicovým kompozitem. Tyto výsledky byly korelovány s výsledky ze strukturní a fraktografické analýzy (TGA, SEM). Experimentální data byla poté analyzována pomocí existujících mikromechanických modelů a byl nalezen vztah mezi tuhostí modelových bi-materiálových těles, složením a geometrií uspořádání jejich komponent a pevností adheze mezi těmito komponentami. Na základě těchto výsledků byl navržen optimální způsob vrstvení a přípravy PFC/FRC bimateriálových těles. Navržené postupy byly použity k přípravě a pre-klinickým testům nosných konstrukcí zubních můstků.
|
32 |
Pokročilé vrstevnaté kompozity pro stomatologické aplikace / Advanced Layered Composites for Dental ApplicationsŠedivý, Zbyněk January 2013 (has links)
Disertační práce se zabývá mechanickou odezvou vrstevnatých kompozitů pro stomatologické aplikace. Různé skladby vrstev a různé částicové a vláknové kompozity jsou studovány v tříbodovém ohybu za pokojové teploty. Tyto výsledky jsou korelovány s výstupy dynamické termomechanické analýzy (DMTA) a optické analýzy (vysokorychlostní video záznam, SEM). Exeprimentální data byla použita pro srovnání s výsledky analytických a numerických modelů s cílem určit nejvhodnější model pro predikci základních mechanických vlastností vrstevnatých kompozitů. Na základě těchto analýz jsou navržena základní pravidla pro klinické použití vrstevnatých kompozitů ve stomatologických aplikacích jako jsou minimálně invazivní můstky nebo stabilizační dlahy.
|
33 |
Study of improving interfacial strength between matrix and reinforcement for green composites / グリーンコンポジットのマトリックスと強化材の界面強度の向上に関する研究 / グリーン コンポジット ノ マトリックス ト キョウカザイ ノ カイメン キョウド ノ コウジョウ ニカンスル ケンキュウ南 基法, Gibeop Nam 22 March 2015 (has links)
In this study, several types of modified methods were tried for improving natural fiber reinforced composites and also three kind of natural fibers were used for reinforced composite. Plasma polymerization increased fiber tensile and composites mechanical properties. It is higher effect than alkali treatment. Resin impregnation was expected cheaper method than plasma polymerization. Polyvinyl Alcohol resin impregnation method can increase fiber tensile strength, interfacial shear strength between fiber and composites mechanical properties. And with Bamboo/polypropylene/maleic anhydride polypropylene water absorption ratio also can decrease. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
34 |
An Advanced Study on Jute-Polyester Composites for Mechanical Design and Impact Safety ApplicationsMache, Ashok Ranganath January 2015 (has links) (PDF)
Natural fiber-reinforced composites are now finding extensive uses in various fields from household articles to automobiles. These composites can score high compared to common synthetic fiber-based composites, notably glass fiber-reinforced composites, in areas such as occupational safety and health, and impact on environment. The current research work is motivated by the need for exploring jute fibers as replacement for glass fibers for various engineering design applications including more demanding impact protection applications as in automotive body structures.
In the current work, detailed mechanical characterization of jute-polyester (JP) composite laminates till failure has been carried out for tensile, compressive and flexural loads by varying volume fraction of jute fibers. The effect of fiber volume fraction on mechanical properties is shown. Because of the potency of closed thin-walled components as structural energy-absorbers, a comprehensive experimental study has been performed, for the first time, comparing the behaviors of various geometric sections of JP and glass-polyester (GP) composite tubes under axial quasi-static and low velocity impact loading. Additionally, for jute-reinforced plastic panels to be feasible solutions for applications such as automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. Thus, a detailed comparative study has been carried out for assessing the performance of JP laminates vis-a-vis GP plates under low velocity impact perforation conditions. As high-end product design is heavily driven by CAE (Computer-Aided Engineering), the current research work has also focused on the challenging task of developing reliable modeling procedures for explicit finite element analysis using LS-DYNA for predicting load-displacement responses and failures of JP composites under quasi-static and impact loading conditions. In order to extend the applications of JP composites to structurally demanding applications, hybrid laminates made of jute-steel composites and jute with nanoclay-reinforced polyester have been investigated and the considerable enhancement of mechanical properties due to hybridization is shown. Furthermore, a comprehensive study has been conducted on the behavior of JP laminates for varying degrees of moisture content until saturation, and the efficacy of hybrid laminates in this context has been shown.
|
35 |
Modeling and Analysis of Wave and Damaging Phenomena in Biological and Bioinspired MaterialsNicolas Guarin-Zapata (6532391) 06 May 2021 (has links)
<p>
There is a current interest in exploring novel microstructural
architectures that take advantage of the response of independent
phases. Current guidelines in materials design are not just based on
changing the properties of the different phases but also on modifying
its base architecture. Hence, the mechanical behavior of composite
materials can be adjusted by designing microstructures that alternate
stiff and flexible constituents, combined with well-designed
architectures. One source of inspiration to achieve these designs is
Nature, where biologically mineralized composites can be taken as an
example for the design of next-generation structural materials due to
their low density, high-strength, and toughness currently unmatched
by engineering technologies.</p><p><br></p>
<p>The present work focuses on the modeling of
biologically inspired composites, where the source of inspiration is
the dactyl club of the Stomatopod. Particularly, we built
computational models for different regions of the dactyl club,
namely: periodic and impact regions. Thus, this research aimed to
analyze the effect of microstructure present in the impact and
periodic regions in the impact resistance associated with the
materials present in the appendage of stomatopods. The main
contributions of this work are twofold. First, we built a model that
helped to study wave propagation in the periodic region. This helped
to identify possible bandgaps and their influence on the wave
propagation through the material. Later on, we extended what we
learned from this material to study the bandgap tuning in bioinspired
composites. Second, we helped to unveil new microstructural features
in the impact region of the dactyl club. Specifically, the
sinusoidally helicoidal composite and bicontinuous particulate layer.
For these, structural features we developed finite element models to
understand their mechanical behavior.</p><p><br></p>
<p>The results in this work help to elucidate some
new microstructures and present some guidelines in the design of
architectured materials. By combining the current synthesis and
advanced manufacturing methods with design elements from these
biological structures we can realize potential blueprints for a new
generation of advanced materials with a broad range of applications.
Some of the possible applications include impact- and
vibration-resistant coatings for buildings, body armors, aircraft,
and automobiles, as well as in abrasion- and impact-resistant wind
turbines.</p><br>
|
Page generated in 0.0806 seconds