Spelling suggestions: "subject:"fiberreinforced composites"" "subject:"fibrereinforced composites""
1 |
Integrated Multi-Scale Modeling Framework for Simulating Failure Response of Fiber Reinforced CompositesAhmadian Ahmadabad, Hossein 28 August 2019 (has links)
No description available.
|
2 |
An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive componentsDu, Yicheng 07 August 2010 (has links)
Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers’ intrinsic properties cause these issues: 1) the mechanical property variation; 2) moisture uptake by natural fibers and their composites; 3) lack of sound, cost-effective, environmentriendly fiber-matrix compounding processes; 4) incompatibility between natural fibers and polymer matrices; and 5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite’s tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite’s water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.
|
3 |
Damage and Failure Analysis of Co-Cured Fiber-Reinforced Composite JointsCao, Caihua 02 December 2003 (has links)
Joints represent a design challenge, especially for composite structures. Among the available joining methods, co-curing is an efficient way to integrate parts for some applications. Coates and Armanios have proposed a Single Nested Overlap (SNO) co-cured joint configuration, obtained from a single lap joint through the overlap/interleafing of the adjoining top/bottom adherend plies, respectively. Through a comparative investigation, they have demonstrated joint strength and fatigue life improvements over the single lap joint counterparts for unidirectional and quasi-isotropic adherend lay-ups. This research extends the comparative investigation of Coates and Armanios by focusing upon characterizing and differentiating the damage initiation and progression mechanisms under quasi-static loading. Six specimen configurations are manufactured and tested. It is confirmed that single nested overlap joints show 29.2% and 27.4% average improvement in strength over single lap counterparts for zero-degree unidirectional and quasi-isotropic lay-ups, respectively.
Several nondestructive evaluation techniques are used to observe and analyze damage initiation, damage progression and failure modes of the studied specimens and to monitor their mechanical response. Using X-ray Radiography and Optical Microscopy techniques during quasi-static loading, a physical characterization of damage and failure mechanisms is obtained. The acoustic emission data acquired during monotonic loading could reveal the overall picture of AE activities produced by the damage initiation, development and accumulation mechanisms within the specimen via parametric analysis. Further AE analysis by a selected supervised clustering method is carried out and shown successful in differentiating and clustering the AE data. Correlation with physical observations from other techniques suggests that the resulting clusters may be associated to specific damage modes and failure mechanisms.
|
4 |
Multiphase Layout Optimization for Fiber Reinforced Composites applying a Damage FormulationKato, Junji, Ramm, Ekkehard 03 June 2009 (has links) (PDF)
The present study addresses an optimization strategy for maximizing the structural ductility of Fiber Reinforced Concrete (FRC) with long textile fibers. Due to material brittleness of both concrete and fiber in addition to complex interfacial behavior between above constituents the structural response of FRC is highly nonlinear. Consideration of this material nonlinearity including interface is mandatory to deal with this kind of composite. In the present contribution three kinds of optimization strategies based on a damage formulation are described. The performance of the proposed method is demonstrated by a series of numerical examples; it is verified that the ductility can be substantially improved.
|
5 |
Machinability of high-strength dental polymers and their performance as framework materials for all-on-four prosthesesAbdallah, Ali J. 26 August 2021 (has links)
OBJECTIVES: To assess the viability of using high-strength polymers as framework materials for full arch implant-supported fixed prostheses, veneered with full-coverage restorations of different materials. The machinability, mechanical performance, and damping capacity of the polymer-based materials was of interest.
METHODS: The two framework polymers – a polyetheretherketone (JUVORA™ Dental Disk, Juvora) (PEEK) and a fiber-reinforced composite (TRINIA™ CAD/CAM Disk, Trinia) (TR) – were characterized with Fourier-Transform Infrared (FTIR) Spectroscopy and energy-dispersive X-ray spectroscopy (EDS). Phase 1 consisted of a machinability study involving the merlon fracture test, which tested the milling success of PEEK and TR at 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm. 10 four-walled merlons of each thickness and material were milled out of CAD/CAM Disks (n = 100 merlons, n = 400 walls) using a 5-axis milling machine, inLab MC X5 (Dentsply Sirona, Germany). Milling success rate, fracture height, fracture length, fracture position, fracture direction, and chipping factor were assessed. In phase 2, 20 bars of dimensions 3.3 mm x 10 mm x 40 mm were milled from each of the two framework materials, PEEK and TR, and two veneer materials – a composite resin material (Shofu Disk HC, Shofu, Inc., Kyoto, Japan) (COM), and a high-translucency 3 mol% yttria-stabilized tetragonal zirconia polycrystal material (Cercon® ht, Dentsply Sirona, Bensheim, Germany) (ZR). Framework and veneer bars were bonded to each other in 4 framework/veneer combinations of 10 bilayers each: PEEK/COM (PCB), PEEK/ZR (PZB), TR/COM (TCB), and TR/ZR (TZB). Bilayer bars were loaded to failure in a 3-point bending test. Failure load, biaxial flexural strength, failure pattern and failure mode were documented. In Phase 3, 10 full arch fixed implant-supported frameworks were designed and fabricated in TR material over an epoxy resin model containing 4 implants in the second premolar and lateral incisor positions. 5 frameworks were veneered by COM in the canine to first molar region, while the other 5 were veneered by ZR. Four loading sites were designated per prosthesis in the occlusal surface of the first molars and the first premolars. Prostheses were loaded at the four occlusal sites in 5 cycles of loading and unloading. The damping capacity of the prostheses was calculated based on energy absorbed during loading and unloading. Displacement and permanent deformation values of the prosthesis structures were obtained from the load-displacement data. Prostheses were loaded to failure at the same sites, and failure load and failure mode were observed.
RESULTS: The minimum machined thickness of PEEK and TR was 0.5 mm. There was no significant difference between milling success of PEEK and TR, but cumulative success rate was slightly superior in PEEK. PEEK exhibited a ductile response to machining damage, while TR showed a more brittle response. Chipping factor of PEEK was higher than TR eightfold, meaning TR showed an improved marginal integrity at 0.5 mm. Both materials showed concerning signs of machining damage with the milling parameters and tools used in this study. Bilayer bars with a TR framework withstood significantly higher loads at failure compared to bilayers with a PEEK framework. Bilayer bars with a ZR veneer withstood significantly higher loads at failure compared to bilayers with a COM veneer. The biaxial flexural strength of the four framework/veneer combinations could not be compared due to the occurrence of delamination in 3 of the 4 groups. The PZB group was the only group with fracture of both the veneer and framework without any delamination and exhibited a mean biaxial flexural strength of 46.15 ± 5.76 MPa. None of the bilayer bars with a TR framework exhibited framework fracture. In delaminated specimens, bilayer bars with a TR framework exhibited mixed adhesive-cohesive failure on both layers, while bilayer bars with a PEEK framework exhibited purely adhesive failure on the PEEK-cement interface. Full arch implant prostheses with a TR framework demonstrated elastic hysteresis in continuous cycles of cyclic loading, which is evidence of viscoelastic damping. Significantly higher energy absorption was observed in prostheses veneered with COM compared to ZR. Energy absorption decreased with increasing cycles of loading-unloading. Significantly higher maximum displacement was observed in prostheses veneered with COM compared to ZR, and in cantilever support compared to bounded support. Maximum displacement was inversely related to the thickness of the veneer and framework materials. Permanent deformation of the prosthesis was negligible after 10 cycles. The failure pattern of all prostheses presented as fracture in the veneer only and partial delamination of the veneer with mixed adhesive-cohesive failure mode. The mean failure load at ZR-veneered bounded sites was significantly higher than that of COM-veneered bounded sites. The mean failure load at bounded loading sites was significantly higher than that of cantilever loading sites. ZR-veneered prostheses demonstrated failure load values above 1000 N at all sites.
CONCLUSION: The merlon fracture test is well-complemented by several quantitative and qualitative measures to assess the machinability of materials. Optimized tools and parameters for milling PEEK and TR should be investigated. Full arch implant prostheses with TR framework and ZR veneer are a viable option for fixed implant rehabilitation demonstrating damping capacity, adequate failure load values, and easy repairability.
|
6 |
Model dentálního můstku vyztuženého vláknovým kompozitem / Model of Fiber Reinforced Composite Dental BridgeHasala, Robert January 2014 (has links)
The diploma thesis aimed to changes of mechanical properties in the influence the use of geometry reinforcement, time delay between cure and measurement. Mechanical properties of model dental bridge observed effect of hydrothermal stress. Dental bridges were reinforced two types of Fiber Reinforced Composites. The first reinforcement had straight unidirectional orientation. The second reinforcement had multidirectional orientation. Mechanical testing was realized in the dependence at the force to deformation model of the dental bridge. Conversion was counted pursuant photo DSC measurement. The character of break was observed at SEM pictures and macro photos. Type of material and reinforcement fibers and their combination had important role at the mechanical properties.
|
7 |
Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire InterferometryMollenhauer, David Hilton 22 August 1997 (has links)
The deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches.
Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [0₄/90₄]<sub>3s</sub> and [+30₂/-30₂/90₄]<sub>3s</sub>, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+30₂/-30₂/90₄]<sub>3s</sub> specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT. / Ph. D.
|
8 |
Investigations on Void Formation in Composite Molding Processes and Structural Damping in Fiber-Reinforced Composites with Nanoscale ReinforcementsDeValve, Caleb Joshua 18 March 2013 (has links)
Fiber-reinforced composites (FRCs) offer a stronger and lighter weight alternative to traditional materials used in engineering components such as wind turbine blades and rotorcraft structures. Composites for these applications are often fabricated using liquid molding techniques, such as injection molding or resin transfer molding. One significant issue during these processing methods is void formation due to incomplete wet-out of the resin within the fiber preform, resulting in discontinuous material properties and localized failure zones in the material. A fundamental understanding of the resin evolution during processing is essential to designing processing conditions for void-free filling, which is the first objective of the dissertation. Secondly, FRCs used in rotorcraft experience severe vibrational loads during service, and improved damping characteristics of the composite structure are desirable. To this end, a second goal is to explore the use of matrix-embedded nanoscale reinforcements to augment the inherent damping capabilities in FRCs.
The first objective is addressed through a computational modeling and simulation of the infiltrating dual-scale resin flow through the micro-architectures of woven fibrous preforms, accounting for the capillary effects within the fiber bundles. An analytical model is developed for the longitudinal permeability of flow through fibrous bundles and applied to simulations which provide detailed predictions of local air entrapment locations as the resin permeates the preform. Generalized design plots are presented for predicting the void content and processing time in terms of the Capillary and Reynolds Numbers governing the molding process.
The second portion of the research investigates the damping enhancement provided to FRC's in static and rotational configurations by different types and weight fractions of matrix-embedded carbon nanotubes (CNTs) in high fiber volume fraction composites. The damping is measured using dynamic mechanical analysis (DMA) and modal analysis techniques, and the results show that the addition of CNTs can increase the material damping by up to 130%. Numerical simulations are conducted to explore the CNT vibration damping effects in rotating composite structures, and demonstrate that the vibration settling times and the maximum displacement amplitudes of the different structures may be reduced by up to 72% and 50%, respectively, with the addition of CNTs. / Ph. D.
|
9 |
CHARACTERIZATION OF FAILURE OF COMPOSITE STRIPS AND SINGLE FIBERS UNDER EXTREME TRANSVERSE LOADINGJinling Gao (8330913) 30 July 2021 (has links)
<p>When a composite laminate is
transversely impacted by a projectile at the ballistic limit, its failure mode
transits from global conical deformation to localized perforation. This Ph.D.
dissertation aims to reveal the fundamental material failure mechanism at the
ballistic limit to control perforation. First, transverse impact experiments
were designed on composite strips to isolate the interaction between plies and
tows. Three failure modes were identified, divided by no, partial, and complete
failure before the transverse wave deformed the entire composite strip. The
failure phenomenon and critical velocity region can differ with the fiber type
and projectile nose geometry and dimension. In most impact events, the
composite strips all failed in tension in the front of the projectiles,
although they failed at different positions as the projectile nose geometry and
fiber type changed. A special failure phenomenon was uncovered when the composite
strips were impacted onto razor blades above the upper limit of the critical
velocity region: the composite strips seemed to be cut through completely by
the razor blades. To further investigate the failure by razor blade, a
microscopic method was developed to cut a single fiber extracted from the
composite strip and simultaneously image the failure process inside a Scanning
Electron Microscope (SEM). The experiments revealed that the razor blade cannot
cut through the inorganic S-2 glass fibers while can partially incision the
aramid Kevlar<sup>® </sup>KM2 Plus fibers and completely shear through the ultra-high-molecular-weight
polyethylene (UHMWPE) Dyneema<sup>®</sup> SK76 fibers. Further investigations
on the fiber’s failure under dynamic cut revealed that there was no variation
in the failure mode when the cut speed was increased from 1.67 μm/s to ~5.34
m/s. To record the local dynamic failure inside the composite strips and single
fibers at high-velocity impact, an advanced imaging technique, high-speed
synchrotron X-ray phase-contrast imaging, was introduced, which allows to
capture the composite’s internal failure with a resolution of up to 1.6
μm/pixel and at a time interval 0.1 μs. Integrated with a reverse impact
technique, such an advanced imaging technique is believed to be capable of
revealing the mechanism involved in the impact-induced cut in single fibers,
yarns, and composite strips. The relevant studies will be the extended work of
this Ph.D. dissertation and published in the future.</p>
|
10 |
Development And Characterization Of Nanoparticlee Enhancements In Pyrolysis-derived High Temperature CompositesMcKee, James 01 January 2013 (has links)
Thermal protection systems, which are commonly used to protect spacecraft during atmospheric entry, have traditionally been made of materials which are traditionally high in manufacturing costs for both the materials needed and the manufacturing complexity, such as carbon-carbon composites and aerogels. [1] In addition to their manufacturing costs, these materials are also limited in their strength, such as PICA, in a way that necessitate the use of tiles as opposed to single structures because they are not capable of supporting larger structures. [2] The limitations of polymer reinforced composites have limited their entry into these applications, except for pyrolyzed composite materials, such as carbon-carbon and ceramic composites. These materials have been successfully demonstrated their utility in extreme environments, such as spacecraft heat shields, but their high costs and the difficulty to manufacture them have limited their use to similarly high performance applications where the costs are justifiable. Previous work by others with “fuzzy fiber” composites have shown that aligned carbon nanotubes (CNTs) grown on fibers can improve their thermal conductivity and wettability. To this end vertically aligned CNTs were studied for their potential use, but found to be difficult to process with current conventional techniques. A composite material comprised of basalt, a relatively new reinforcing fiber, and phenolic, which has been used in high-temperature applications with great success was made to attempt to create a new material for these applications. To further improve upon the favorable properties of the resulting composite, the composite was pyrolyzed to produce a basalt-carbon composite with a higher thermal stability than its pristine state. While testing the effects of pyrolysis on the thermal stability, a novel iv technique was also developed to promote in-situ carbon nanotube growth of the resulting basaltcarbon composite without using a monolithic piece of cured phenolic resin in place of the standard aromatic hydrocarbon-catalyst precursor. [3, 4] The in-situ growth of carbon nanotubes (CNTs) was explored as their thermal stability [5] and effectiveness in improving performance has been previously demonstrated when used as a resin additive [6]. The specimens were examined with SEM, EDS, and TGA to determine the effects of both pyrolysis and CNT growth during pyrolysis of the basalt phenolic composites. These tests would confirm the presence of CNTs/CNFs directly grown in the composite by pyrolysis, and confirm their composition by EDS and Raman spectroscopy. EDS would additionally confirm that the surface of the basalt fibers possess a composition suitable for CNT growth, similar to the parameters of CVD processing. Additional testing would also show that the growth behavior of the CNTs/CNFs is dependent on temperature as opposed to composition, indicating that there is a threshold temperature necessary to facilitate the availability of catalysts from within the basalt fibers. The thermal stability shown by TGA indicates that the process of pyrolysis leaves the newly formed composite with a high degree of thermal stability, making the new materials potentially usable in applications such as turbines, in addition to large-scale thermal protection systems.
|
Page generated in 0.0592 seconds