• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 11
  • 4
  • 1
  • Tagged with
  • 95
  • 61
  • 60
  • 60
  • 55
  • 14
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

O jardim em Portugal nos séculos XVII e XVIII

Leite, Ana Cristina, 1959- January 1988 (has links)
No description available.
82

Classificação de níveis de desgaste de dressadores de ponta única utilizando sinais de emissão acústica e redes neurais artificiais

Martins, Cesar Henrique Rossinoli [UNESP] 20 March 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-03-20Bitstream added on 2014-06-13T20:49:16Z : No. of bitstreams: 1 martins_chr_me_bauru.pdf: 3300032 bytes, checksum: c6be05b5fe4d2831ce67d7e7ddc84b4d (MD5) / A retificação é um processo de acabamento de peças, que objetiva produtos e superfícies avançadas. Porém, como o constante atrito entre a peça e rebolo, este perde a agressividade, de modo que o resultado da retificação fica prejudicado. Quando isso ocorre é imprescindível à realização do processo de dressagem, que consiste em reavivar os grãos gastos do rebolo. Como as condições de dressagem provocam uma grande influência no desempenho da operação de retificação, monitorá-las durante todo o processo pode aumentar a sua eficiência. Assim, no presente trabalho foi realizado um estudo do desgaste de três tipos de diamantes para dressadores e, posteriormente, foram desenvolvidos modelos neurais, baseados em redes MLP e de Kohonen, capazes de classificar o nível de desgaste dos dressadores. Para se atingir esse objetivo foram ensaiados três tipos de dressadores de ponta única, um com diamante sintético CVD e dois com diamantes naturais, Mato Grosso e Brasil Extra. Serviram de entradas para os modelos neurais as estatísticas RMS e ROP obtidas após o estudo do conteúdo harmônico do sinal da emissão acústica. Para cada diamante foi obtido um modelo neural mais apto para as características do diamante. Os resultados mostraram um bom desempenho das redes neurais empregadas, atingindo-se taxas de acerto de 100% em alguns modelos neurais / Grinding is a part finishing process for advanced products and surfaces. However, continuous friction between the work piece and the grinding wheel causes the latter to lose its sharpness, thus impariring the grinding results. This is when the dressing process is required, which consist of sharpening the worn grains of the grinding wheel. The dressing conditions strongly affect the performance of the grinding operation; hence, monitoring them thoughout the process can increase its efficiency. The main objective of this study was to classify the levels of wear of a single-point dresser during the operation; hence monitoring them throughout the process can increase its efficiency. The main objective of this study was to classify the levels of wear of a single-point dresser during the operation using neural models. A digital signal processing of acoustiv emission was used to obtain the network inputs. In the experiments three types of single-point dresser were used, one with CVD synthetic diamond and two with natural diamonds, Mato Grosso and Brasil Extra. The harmonic content of the acoustic emission signal was found to be influenced by the condition of the dresser, and when used to feed the neural model it is possible to classify the wear level. The results showed a good performance of the neural networks employed, reaching a hit rate of 100% for some models
83

Classificação de níveis de desgaste de dressadores de ponta única utilizando sinais de emissão acústica e redes neurais artificiais /

Martins, Cesar Henrique Rossinoli. January 2013 (has links)
Orientador: Paulo Roberto de Aguiar / Banca: Rogério Andrade Flauzino / Banca: José Alfredo Covolan Ulson / Resumo: A retificação é um processo de acabamento de peças, que objetiva produtos e superfícies avançadas. Porém, como o constante atrito entre a peça e rebolo, este perde a agressividade, de modo que o resultado da retificação fica prejudicado. Quando isso ocorre é imprescindível à realização do processo de dressagem, que consiste em reavivar os grãos gastos do rebolo. Como as condições de dressagem provocam uma grande influência no desempenho da operação de retificação, monitorá-las durante todo o processo pode aumentar a sua eficiência. Assim, no presente trabalho foi realizado um estudo do desgaste de três tipos de diamantes para dressadores e, posteriormente, foram desenvolvidos modelos neurais, baseados em redes MLP e de Kohonen, capazes de classificar o nível de desgaste dos dressadores. Para se atingir esse objetivo foram ensaiados três tipos de dressadores de ponta única, um com diamante sintético CVD e dois com diamantes naturais, Mato Grosso e Brasil Extra. Serviram de entradas para os modelos neurais as estatísticas RMS e ROP obtidas após o estudo do conteúdo harmônico do sinal da emissão acústica. Para cada diamante foi obtido um modelo neural mais apto para as características do diamante. Os resultados mostraram um bom desempenho das redes neurais empregadas, atingindo-se taxas de acerto de 100% em alguns modelos neurais / Abstract: Grinding is a part finishing process for advanced products and surfaces. However, continuous friction between the work piece and the grinding wheel causes the latter to lose its sharpness, thus impariring the grinding results. This is when the dressing process is required, which consist of sharpening the worn grains of the grinding wheel. The dressing conditions strongly affect the performance of the grinding operation; hence, monitoring them thoughout the process can increase its efficiency. The main objective of this study was to classify the levels of wear of a single-point dresser during the operation; hence monitoring them throughout the process can increase its efficiency. The main objective of this study was to classify the levels of wear of a single-point dresser during the operation using neural models. A digital signal processing of acoustiv emission was used to obtain the network inputs. In the experiments three types of single-point dresser were used, one with CVD synthetic diamond and two with natural diamonds, Mato Grosso and Brasil Extra. The harmonic content of the acoustic emission signal was found to be influenced by the condition of the dresser, and when used to feed the neural model it is possible to classify the wear level. The results showed a good performance of the neural networks employed, reaching a hit rate of 100% for some models / Mestre
84

Fighting Fire with Fire: Redefining the Interior Design Value Proposition

Setser, Katherine 28 October 2013 (has links)
No description available.
85

Studium vlastností vláknocementových kompozitních materiálů / Study of properties of fibre-cement composites

Hoško, Marek January 2015 (has links)
The work deals with the summarization of knowledge concerning issues of fiber cement. There are characterized feedstock, production technologies, properties and surface finish corrugated fiber covering. Furthermore, the paper describes the normative requirements for Corrugated Sheets, affecting the quality of manufactured roofing. In the practical part of the thesis were sampled corrugated sheets, which have been investigated possible influences affecting the quality of the surface finish. Was also solved the issue of insufficient adhesion of acrylic paint on selected plates in the factory CEMBRIT a.s. in Šumperk.
86

Surface modification and chromophore attachment via ionic assembly and covalent fixation

Hubbell, Christopher 09 January 2009 (has links)
A reactive-ionic functional group was incorporated into the structure of fiber finishes and colorants to provide high-yield add-on and permanency. The reactive-ionic group consists of a moderately strained, cyclic ammonium group which undergoes ionic assembly on the surface of negatively charged substrates. The ionic bond is then converted to a covalent bond at elevated temperatures via a ring-opening reaction. A reactive-ionic alkyl (wax) finish was prepared from octadecanol and N-phenyl pyrrolidine then applied to a glass slide to provide a permanent, hydrophobic surface with an average contact angle increase of approximately 40°. A reactive-ionic fluorinated finish was prepared from 1H,1H,2H,2H-perfluoro-1-octanol and N-phenyl pyrrolidine and after application served as a permanent, non-wetting, anti-stain finish for nylon carpet. A reactive-ionic chromophore (dye) was prepared from C.I. Disperse Red 1 and quinuclidine. The reactive-ionic dye was applied to cellophane and nylon films and bleached cotton, nylon and silk fabrics. The percent exhaustion for a 1% owf dyeing of silk fabric was measured to be 98% using visible light absorbance spectrophotometry. K/S values obtained from reflectance spectrophotometric measurements of a 1% owf dyeing of nylon 6,6 fabric showed a 6% color loss after solvent extraction, indicating that the dyeing was indeed permanent.
87

Evaluation of secondary wire bond integrity on silver plated and nickel/palladium based lead frame plating finishes

Srinivasan, Guruprasad. January 2008 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2008. / Includes bibliographical references.
88

Aplicação de redes neurais artificiais no monitoramento da operação de dressagem

Grizzo, Daniela Fernanda [UNESP] 06 July 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-07-06Bitstream added on 2014-06-13T19:36:43Z : No. of bitstreams: 1 moia_dfg_me_bauru.pdf: 2028523 bytes, checksum: a4957573090c9f2211022b6a4fceb9b6 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O processo de retificação confere à peça o acabamento final, minimizando as irregularidades superficiais através de interações entre os grãos abrasivos de uma ferramenta (rebolo) e peça retificada. O desgaste do rebolo devido ao atrito entre o rebolo e a peça retificada torna a ferramenta inadequada para nova utilização, sendo necessária a realização do processo de dressagem do rebolo para remoção e ou avivamento dos grãos gastos de sua superfície de corte, de forma e deixá-lo em condições para novo uso. O presente trabalho tem como objetivo classificar a condição do rebolo durante a operação de dressagem utilizando o sinal de emissão acústica (EA) e estatísticas derivadas desse sinal, por meio de redes neurais artificiais. Nos experimentos realizados usou-se um rebolo de óxido de alumínio instalado em uma retificadora plana, um sistema de aquisição de sinais e um dressador de ponta única de diamante. O processamento digital de sinais foi obtido através do software MATLAB. Os ensaios foram realizados com diferentes graus de recobrimento e profundidade de dressagem. A partir dos dados obtidos de EA puro, calculou-se o valor médio quadrático (RMS), bem como mais duas estatísticas, as quais já foram empregadas com sucesso em trabalhos de detecção de queima, no processo de retificação. Essas estatísticas também se mostraram bons indicadores para o monitoramento da operação de dressagem. Uma rede neural perceptron multicamadas (MLP) foi utilizada com o algoritmo de aprendizado Levenberg-Marquardt, cujas entradas foram as duas estatísticas mencionadas e o valor RMS de EA. Os resultados mostram que o método empregado foi capaz de classificar as condições do rebolo no processo de dressagem, identificando o rebolo como afiado (com capacidade de corte) e rebolo se afiação (com perda de capacidade de corte), viabilizando a redução do tempo e custo dessa operação e minimizando a remoção excessiva / The grinding process gives the piece a final finish by minimizing surface irregularities through interactions between the abrasive grains of a tool (wheel) and the part to be ground. The wear of the grinding wheel due to excessive friction between the grinding wheel and ground workpiece makes the tool unsuitable for further use; it is imperative the accomplishment of the process of dressing the grinding wheel to remove or resharpen the worn grains of its surface in order to make if suitable for use again. The present study aims to classify the condition of the grinding wheel during operation using acoustic emission (AE) signal and statistics derived from this sinal through artificial neural networks. In the experiments an aluminum oxide grinding wheel installed to a surface grinding machine was used along with a data acquisition system and a single point diamond dresser. The digital processing of these data was obtained using the MATLAB software. Tests were performed with different overlap ratio and depth of cut. The root mean square value of the AE signal as well as two other statistics were obtained from the raw acoustic emission signal, which have been successfully used in grinding burn detection. These statistics were also good indicators for monitoring the dressing operation. A multilayer perceptron neural network (MLP) was used with the learning algorithm Levenberg-Marquardt, whose inputs were the statistics previously mentioned and dressing conditions. The results show that the method used was able to classify the conditions of the grinding wheel in the process of dressing, identifying the wheel as sharp (cutting capacity) and dull (with loss of cutting capacity), enabling the reduction of time and cost of operation and minimizing the excessive removal of the wheel abrasive material
89

Aplicação de redes neurais artificiais no monitoramento da operação de dressagem /

Grizzo, Daniela Fernanda. January 2012 (has links)
Orientador: Paulo Roberto de Aguiar / Banca: Carlos Elias da Silva Junior / Banca:m Eduardo Carlos Bianchi / Resumo: O processo de retificação confere à peça o acabamento final, minimizando as irregularidades superficiais através de interações entre os grãos abrasivos de uma ferramenta (rebolo) e peça retificada. O desgaste do rebolo devido ao atrito entre o rebolo e a peça retificada torna a ferramenta inadequada para nova utilização, sendo necessária a realização do processo de dressagem do rebolo para remoção e ou avivamento dos grãos gastos de sua superfície de corte, de forma e deixá-lo em condições para novo uso. O presente trabalho tem como objetivo classificar a condição do rebolo durante a operação de dressagem utilizando o sinal de emissão acústica (EA) e estatísticas derivadas desse sinal, por meio de redes neurais artificiais. Nos experimentos realizados usou-se um rebolo de óxido de alumínio instalado em uma retificadora plana, um sistema de aquisição de sinais e um dressador de ponta única de diamante. O processamento digital de sinais foi obtido através do software MATLAB. Os ensaios foram realizados com diferentes graus de recobrimento e profundidade de dressagem. A partir dos dados obtidos de EA puro, calculou-se o valor médio quadrático (RMS), bem como mais duas estatísticas, as quais já foram empregadas com sucesso em trabalhos de detecção de queima, no processo de retificação. Essas estatísticas também se mostraram bons indicadores para o monitoramento da operação de dressagem. Uma rede neural perceptron multicamadas (MLP) foi utilizada com o algoritmo de aprendizado Levenberg-Marquardt, cujas entradas foram as duas estatísticas mencionadas e o valor RMS de EA. Os resultados mostram que o método empregado foi capaz de classificar as condições do rebolo no processo de dressagem, identificando o rebolo como "afiado" (com capacidade de corte) e rebolo "se afiação" (com perda de capacidade de corte), viabilizando a redução do tempo e custo dessa operação e minimizando a remoção excessiva / Abstract: The grinding process gives the piece a final finish by minimizing surface irregularities through interactions between the abrasive grains of a tool (wheel) and the part to be ground. The wear of the grinding wheel due to excessive friction between the grinding wheel and ground workpiece makes the tool unsuitable for further use; it is imperative the accomplishment of the process of dressing the grinding wheel to remove or resharpen the worn grains of its surface in order to make if suitable for use again. The present study aims to classify the condition of the grinding wheel during operation using acoustic emission (AE) signal and statistics derived from this sinal through artificial neural networks. In the experiments an aluminum oxide grinding wheel installed to a surface grinding machine was used along with a data acquisition system and a single point diamond dresser. The digital processing of these data was obtained using the MATLAB software. Tests were performed with different overlap ratio and depth of cut. The root mean square value of the AE signal as well as two other statistics were obtained from the raw acoustic emission signal, which have been successfully used in grinding burn detection. These statistics were also good indicators for monitoring the dressing operation. A multilayer perceptron neural network (MLP) was used with the learning algorithm Levenberg-Marquardt, whose inputs were the statistics previously mentioned and dressing conditions. The results show that the method used was able to classify the conditions of the grinding wheel in the process of dressing, identifying the wheel as sharp (cutting capacity) and dull (with loss of cutting capacity), enabling the reduction of time and cost of operation and minimizing the excessive removal of the wheel abrasive material / Mestre
90

Kvalita povrchových úprav DPS a optimalizace testovacího kupónu / Quality of PCB Surface Finishes and Test Coupon Optimization

Minář, Jan January 2018 (has links)
This master’s thesis deals with measuring and evaluation of wetting for samples of different surface finishes, using a test coupon developed in cooperation with firm Gatema. It deals with surface finishes ENIG and immersion tin. For these samples deals with quality monitoring and periodic testing of these surface finishes. The solder using for tests is SAC305. Test methods are used for simulation of reflow soldering and wave soldering.

Page generated in 0.0342 seconds