• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionering och utförande av bottenplattor utsatta för upptryck

Akfidan, Johny, Sadek, Rafed January 2012 (has links)
När en konstruktion byggs på det viset att dess bottenplatta hamnar under grundvattenytan, skapas ett grundvattentryck upp mot bottenplattan och konstruktionen, som kan åstadkomma stora problem. Grundvattnet, som tryckts undan av konstruktionen, vill nå upp till sin ursprungliga nivå och därmed trycka med sig konstruktionen upp. Detta fenomen kallas hydraulisk bottenupptryckning. Fenomenet kan motverkas på olika sätt, där rapporten beaktar två olika sätt att motverka hydraulisk bottenupptryckning på: genom en bottenplatta som är tyngre än grundvattentrycket eller förankra bottenplattan mot ett fast underlag. Genom att uppmärksamma och sammanställa projekt (huvudsakligen konstruerade av Tyréns) som tagit hänsyn till ovan nämnda fenomen vid dimensioneringen av bottenplattan, har en rapport skapats. Denna rapport ska finnas för att åstadkomma kunskapsåterföring av de problem som uppstått i projekten och deras lösningar. Utöver att skapa en rapport där de berörda projekten sammanställs ska en bottenplatta optimeras, huvudsakligen med hänseende till bottenplattans tjocklek och dess bärförmåga mot genomstansning för olika förankringstyper. Optimeringen ska ske i enlighet med, huvudsakligen Eurokod 2 kapitlen 6.4 och 7.3. Det har bestämts att tre tjocklekar på bottenplattan ska beaktas, och dessa är 400, 550 och 800 mm. Genom diskussioner med våra handledare, sakkunnig personal på Tyréns och representanter inom branschen, valdes ett antal förankringstyper som skulle jämföras. För att kunna jämföra kombinationerna av de olika tjocklekarna på bottenplattan och de olika förankringstyperna, har Tyréns projekt Biomedicum med dess förutsättningar, utnyttjats som referensobjekt. Att ta fram de inre krafterna i bottenplattan via handberäkningar är mycket komplicerat och tidskrävande för att rymmas inom ramen för denna studie. Därför används programmet FEM Plate (Strusoft) för att ta fram dessa krafter. De inre krafter som tas fram från FEM Plate utnyttjas sedan för att med hjälp av handberäkningar, i enlighet Eurokod 2, dimensionera Biomedicums bottenplatta enligt de moment som krävs. Jämförelsen av de olika kombinationerna visar på att bottenplattan 400 mm med förankringstypen stålkärna av diameter 80 mm från Inexa Profil är den optimala lösningen för Biomedicums bottenplatta. Denna förankringstyp (för bottenplattan 400 mm) är den enda som får en tillräcklig bärförmåga mot genomstansning av bottenplattan, endast med åtgärden skjuvarmering runtomkring förankringen. En föreslagen lösning på hur förankringstypen bör monteras i bottenplattan har tagits fram. Diskussioner med sakkunnig personal från Minova (tillverkare av MAI-förankringen) har lett till övertygelsen om att föreslagen lösning fungerar utan några kapacitetsförsämringar på förankringen. En modellering av bottenplattan 400 mm med föreslagen lösning på MAIförankringen och efterföljande handberäkningar, visar att lösningen optimerar bottenplattan än mer. föreslagen lösning på monteringen i bottenplattan bör dessutom kunna tillämpas på de andra förankringstyperna, men har endast beaktats för MAI-förankringen. Eftersom fokus endast är på att den optimala bottenplattan är 400 mm och ingen hänsyn tas till kostnaderna, är föreslagen lösning på MAI-staget den optimala lösningen. Det är den enda förankringen som har en tillräcklig bärförmåga mot genomstansning för bottenplattan 400 mm, utan några som helst extra åtgärder. En bottenplatta med vot under förankringen bör undvikas, eftersom förtjockningen av bottenplattan under förankringen kräver mycket extra tid i utförande. Därför rekommenderas det att en jämntjock bottenplatta dimensioneras med eventuell skjuvarmering, om bottenplattans bärförmåga mot genomstansning inte är tillräcklig utan skjuvarmering. Den optimering som tagits fram är en generalisering av Biomedicums bottenplatta. Detta leder till att de modeller och beräkningar som gjorts, enkelt kan implementeras på andra bottenplattor med samma problem genom att justera indata.
2

MANGO - Generating 2D-Magnetic Field Maps From Normal-Conducting Magnets Of Experimental Areas / MANGO - Generering av 2D-magnetfältskartor för elektromagneter i CERNs experimentområden

Visive, Ambre January 2023 (has links)
This thesis discusses the development of MANGO, a tool created to model normal-conducting magnets which were installed in the 1970s in the experimental areas at CERN, and store their analysis. MANGO formulates an answer to two problems faced by the physicists of the Beam Department when they model a beam line: first, how to produce new magnetic field maps and, second, how to easily access existing ones? It contains a multi-use package that offers an automated process to produce magnetic field maps from finite-element models of magnets. In addition, the package can visualise the field density or the flux lines of a magnet, and can benchmark a model and automatically store the solutions in a database, while tailoring its content to the level of expertise in electromagnetism and finite-elements modelling of the users. To development of the tool starts by modelling the different types of the normal-conducting magnets using two-dimensional finite element modelling (Opera-2D). After the successful development of one finite element model, it is benchmarked to justify its use in the creation of magnetic field maps. To address the second challenge and avoid any duplication of work, MANGO integrates a Git repository with submodules, where the finite-element models, the magnetic field maps and the documentation are stored. / I detta examensarbete diskuteras utvecklingen av MANGO, ett verktyg som skapats för att modellera normalkonduktiva elektromagneter, som installerades på 1970-talet i CERN:s experimentområden, och lagra deras analys. Mer specifikt formulerar MANGO ett svar på två problem som fysiker vid Beam Department står inför när de modellerar en partikelstrållinje. Hur skapar man nya magnetfältskartor och, hur får man enkelt tillgång till nuvarande magnetfältskartor? Det innehåller ett programbibliotek med flera användningsområden, som skapar nya magnetfältskartor från nuvarande magnetmodeller, som skapas av programbibliotek självt. Med den programbibliotek kan man visualisera en magnets fältdensitet eller flödeslinjer, benchmarka modellen och automatiskt lagra magnetlösningar och numeriska simuleringar i databasen, utöver att modellera magneter, och samtidigt ge möjlghet för anpassning av innehållet till användarens kunskapsnivå och färdigheter. För att utveckla MANGO börjar författaren med att modellera de olika typerna av normalkonduktiva elektromagneter med hjälp av tvådimensionell finit elementmodellering (Opera-2D). Efter den framgångsrika utvecklingen av en finit elementmodell, fortsätter författaren med benchmarking av modell för att motivera dess användning inom skapandet av magnetfältskartor. För att besvara det andra problemet integrerar MANGO ett Git-databas där finita elementmodellerna, magnetfältskartorna och dokumentationen lagras, för att undvika dubbelarbete. Git databas har undermoduler för att kunna skapa olika åtkomster per användarnivå.

Page generated in 0.1248 seconds