• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 24
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 139
  • 54
  • 33
  • 26
  • 25
  • 24
  • 23
  • 22
  • 21
  • 19
  • 18
  • 18
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Laserový řezací plotr ocelových plátů / Laser Plotter for Cutting Steel Plates

Dokulil, Marek January 2018 (has links)
This diploma thesis is divided into two main parts. The first section is dedicated to the history and development of the laser technology. The second part describes all individual types of laser technology which are used in the industry nowadays. The next section follows with the research of various laser devices which serve mainly as a cutting tool. This knowledge gathered in the previous part was used to create the next part including the own conception of the machine. The second half of this diploma thesis deals with a research of software available at the market today. Eventually, after summarizing the characteristics of each software, the new concept and implementation of own software are made. In the final section, there are mentioned the possible extension and available upgrades. The reader should be able to create his/her own conception of the laser device and software after reading and understanding this paper.
102

Decision-making AI in digital games

Al Shehabi, Ahmad January 2022 (has links)
The field of artificial intelligence has gained much knowledge through the implementation of decision-making systems in video games. One of these systems was the Goal Oriented Action Planning system (GOAP) which directs the behavior of an AI-agent through multiple digital artifacts categorized as goals, actions, and plans. The aim of the thesis is to aid in the understanding and creation of GOAP driven AI-agents in a video game setting to promote research on this topic. The research question of this thesis was about finding out how the GOAP architecture compares to other video game decision-making systems. The theoretical framework introduces the concept of the illusion of intelligence in video games and presents a discussion focused on the different components which make up a GOAP system and other components that support it. Additionally, the theoretical framework explains the need for a comparison between different decision-making systems and explains the social impact of game AI research. The methods section introduces the criteria for the comparison between GOAP and other decision-making systems and presents a comparison process that was driven by a literature review. A GOAP system was designed for this thesis using the unified modeling language and concept maps. It was then implemented using C# code in a free-of-charge game engine called Unity. We present the pseudocode for the implementation of the GOAP system and show that this framework is a modular, customizable, and reusable system that enables AI-agents to create plans from a varied set of actions. Finally, the paper suggests further research within game decision-making AI and emphasizes the importance of game AI research for communities of game developers, hobbyists, and others who could benefit from game AI in their projects.
103

Automatic Speech Recognition in Somali

Gabriel, Naveen January 2020 (has links)
The field of speech recognition during the last decade has left the research stage and found its way into the public market, and today, speech recognition software is ubiquitous around us. An automatic speech recognizer understands human speech and represents it as text. Most of the current speech recognition software employs variants of deep neural networks. Before the deep learning era, the hybrid of hidden Markov model and Gaussian mixture model (HMM-GMM) was a popular statistical model to solve speech recognition. In this thesis, automatic speech recognition using HMM-GMM was trained on Somali data which consisted of voice recording and its transcription. HMM-GMM is a hybrid system in which the framework is composed of an acoustic model and a language model. The acoustic model represents the time-variant aspect of the speech signal, and the language model determines how probable is the observed sequence of words. This thesis begins with background about speech recognition. Literature survey covers some of the work that has been done in this field. This thesis evaluates how different language models and discounting methods affect the performance of speech recognition systems. Also, log scores were calculated for the top 5 predicted sentences and confidence measures of pre-dicted sentences. The model was trained on 4.5 hrs of voiced data and its corresponding transcription. It was evaluated on 3 mins of testing data. The performance of the trained model on the test set was good, given that the data was devoid of any background noise and lack of variability. The performance of the model is measured using word error rate(WER) and sentence error rate (SER). The performance of the implemented model is also compared with the results of other research work. This thesis also discusses why log and confidence score of the sentence might not be a good way to measure the performance of the resulting model. It also discusses the shortcoming of the HMM-GMM model, how the existing model can be improved, and different alternatives to solve the problem.
104

Detecting Distribution-Level Voltage Anomalies by Monitoring State Transitions in Voltage Regulation Control Systems

Girbino, Michael James 23 May 2019 (has links)
No description available.
105

Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics and Control

Taha, Haithem Ezzat Mohammed 04 December 2013 (has links)
A flapping-wing micro-air-vehicle (FWMAV) represents a complex multi-disciplinary system whose analysis invokes the frontiers of the aerospace engineering disciplines. From the aerodynamic point of view, a nonlinear, unsteady flow is created by the flapping motion. In addition, non-conventional contributors, such as the leading edge vortex, to the aerodynamic loads become dominant in flight. On the other hand, the flight dynamics of a FWMAV constitutes a nonlinear, non-autonomous dynamical system. Furthermore, the stringent weight and size constraints that are always imposed on FWMAVs invoke design with minimal actuation. In addition to the numerous motivating applications, all these features of FWMAVs make it an interesting research point for engineers. In this Dissertation, some challenging points related to FWMAVs are considered. First, an analytical unsteady aerodynamic model that accounts for the leading edge vortex contribution by a feasible computational burden is developed to enable sensitivity and optimization analyses, flight dynamics analysis, and control synthesis. Second, wing kinematics optimization is considered for both aerodynamic performance and maneuverability. For each case, an infinite-dimensional optimization problem is formulated using the calculus of variations to relax any unnecessary constraints induced by approximating the problem as a finite-dimensional one. As such, theoretical upper bounds for the aerodynamic performance and maneuverability are obtained. Third, a design methodology for the actuation mechanism is developed. The proposed actuation mechanism is able to provide the required kinematics for both of hovering and forward flight using only one actuator. This is achieved by exploiting the nonlinearities of the wing dynamics to induce the saturation phenomenon to transfer energy from one mode to another. Fourth, the nonlinear, time-periodic flight dynamics of FWMAVs is analyzed using direct and higher-order averaging. The region of applicability of direct averaging is determined and the effects of the aerodynamic-induced parametric excitation are assessed. Finally, tools combining geometric control theory and averaging are used to derive analytic expressions for the textit{Symmetric Products}, which are vector fields that directly affect the acceleration of the averaged dynamics. A design optimization problem is then formulated to bring the maneuverability index/criterion early in the design process to maximize the FWMAV maneuverability near hover. / Ph. D.
106

Automatic Translation of Moore Finite State Machines into Timed Discrete Event System Supervisors / Automatic Translation of Moore FSM into TDES Supervisors

Mahmood, Hina January 2023 (has links)
In the area of Discrete Event Systems (DES), formal verification techniques are important in examining a variety of system properties including controllability and nonblocking. Nonetheless, in reality, most software and hardware practitioners are not proficient in formal methods which holds them back from the formal representation and verification of their systems. Alternatively, it is a common observation that control engineers are typically familiar with Moore synchronous Finite State Machines (FSM) and use them to express their controllers’ behaviour. Taking this into consideration, we devise a generic and structured approach to automatically translate Moore synchronous FSM into timed DES (TDES) supervisors. In this thesis, we describe our FSM-TDES translation method, present a set of algorithms to realize the translation steps and rules, and demonstrate the application and correctness of our translation approach with the help of an example. In order to develop our automatic FSM-TDES translation approach, we exploit the structural similarity created by the sampled-data (SD) supervisory control theory between the two models. To build upon the SD framework, first we address a related issue of disabling the tick event in order to force an eligible prohibitable event in the SD framework. To do this, we introduce a new synchronization operator called the SD synchronous product (||SD), adapt the existing TDES and SD properties, and devise our ||SD setting. We formally verify the controllability and nonblocking properties of our ||SD setting by establishing logical equivalence between the existing SD setting and our ||SD setting. We present algorithms to implement our ||SD setting in the DES research tool, DESpot. The formulation of the ||SD operator provides twofold benefits. First, it simplifies the design logic of the TDES supervisors that are modelled in the SD framework. This results in improving the ease of manually designing SD controllable TDES supervisors, and reduced verification time of the closed-loop system. We demonstrate these benefits by applying our ||SD setting to an example system. Second, it bridges the gap between theoretical supervisors and physical controllers with respect to event forcing. This makes our FSM-TDES translation approach relatively uncomplicated. Our automatic FSM-TDES translation approach enables the designers to obtain a formal representation of their controllers without designing TDES supervisors by hand and without requiring formal methods expertise. Overall, this work should increase the adoption of the SD supervisory control theory in particular, and formal methods in general, in the industry by facilitating software and hardware practitioners in the formal representation and verification of their control systems. / Dissertation / Doctor of Philosophy (PhD)
107

Application of Hazard and Operability (HAZOP) Methodology to Safety-Related Scientific Software

Gupta, Jatin 02 October 2014 (has links)
No description available.
108

VERIFICATION AND VALIDATION OF A SAFETY SYSTEM FOR A FUEL-CELL RESEARCH FACILITY: A CASE STUDY

Faria, Daniel C. 24 August 2007 (has links)
No description available.
109

Logical specification of finite-state transductions for natural language processing

Vaillette, Nathan 04 February 2004 (has links)
No description available.
110

Dynamical System Representation and Analysis of Unsteady Flow and Fluid-Structure Interactions

Hussein, Ahmed Abd Elmonem Ahmed 01 November 2018 (has links)
A dynamical system approach is utilized to reduce the representation order of unsteady fluid flows and fluid-structure interaction systems. This approach allows for significant reduction in the computational cost of their numerical simulations, implementation of optimization and control methodologies and assessment of their dynamic stability. In the first chapter, I present a new Lagrangian function to derive the equations of motion of unsteady point vortices. This representation is a reconciliation between Newtonian and Lagrangian mechanics yielding a new approach to model the dynamics of these vortices. In the second chapter, I investigate the flutter of a helicopter rotor blade using finite-state time approximation of the unsteady aerodynamics. The analysis showed a new stability region that could not be determined under the assumption of a quasi-steady flow. In the third chapter, I implement the unsteady vortex lattice method to quantify the effects of tail flexibility on the propulsive efficiency of a fish. I determine that flexibility enhances the propulsion. In the fourth chapter, I consider the stability of a flapping micro air vehicle and use different approaches to design the transition from hovering to forward flight. I determine that first order averaging is not suitable and that time periodic dynamics are required for the controller to achieve this transition. In the fifth chapter, I derive a mathematical model for the free motion of a two-body planar system representing a fish under the action of coupled dynamics and hydrodynamics loads. I conclude that the psicform fish family are inherently stable under certain conditions that depend on the location of the center of mass. / Ph. D. / We present modeling approaches of the interaction between flying or swimming bodies and the surrounding fluids. We consider their stability as they perform special maneuvers. The approaches are applied to rotating blades of helicopters, fish-like robots, and micro-air vehicles. We develop and validate a new mathematical representation for the flow generated by moving or deforming elements. We also assess the effects of fast variations in the flow on the stability of a rotating helicopter blade. The results point to a new stable regime for their operation. In other words, the fast flow variations could stabilize the rotating blades. These results can also be applied to the analysis of stability of rotating blades of wind turbines. We consider the effects of flexing a tail on the propulsive force of fish-like robots. The results show that adding flexibility enhances the efficiency of the fish propulsion. Inspired by the ability of some birds and insects to transition from hovering to forward motion, we thoroughly investigate different approaches to model and realize this transition. We determine that no simplification should be applied to the rigorous model representing the flapping flight in order to model transition phenomena correctly. Finally, we model the forward-swim dynamics of psciform and determine the condition on the center of mass for which a robotic fish can maintain its stability. This condition could help in designing fish-like robots that perform stable underwater maneuvers.

Page generated in 0.0664 seconds