• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equação de Poisson em variedades riemannianas e estimativas do primeiro autovalor

Klaser, Patrícia Kruse January 2010 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor de Dirichlet para dom nios multiplamente conexos contidos em variedades riemannianas. Essas estimativas consideram o supremo da curvatura seccional da variedade e a curvatura do bordo do domínio. Para obter os resultados, usa-se uma estimativa C0 para solucões da equação de Poisson. / Lower bounds for the rst Dirichlet eigenvalue are presented. We consider multiply connected domains in riemannian manifolds. The estimates are obtained using hypothesis on the supremum of the manifold's sectional curvature and on the domain's boundary curvature. C0 estimates for solutions of Poissons equation are used to prove the results.
2

Teoremas de comparação e uma aplicação a estimativa do primeiro autovalor

Nunes, Adilson da Silva January 2014 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor do problema de Dirichlet para o Laplaciano para domínios relativamente compactos contidos em variedades riemannianas. Essas estimativas são obtidas com hipóteses sobre a curvatura seccional ou a curvatura de Ricci radial e a curvatura do bordo do domínio. / This paper deals of lower estimates for the first eigenvalue of the Dirichlet problem for the Laplacian for relatively compact domains contained in Riemannian manifolds. These estimates are obtained with assumptions on the sectional or Ricci radial curvature and the curvature of the boundary of the domain.
3

Equação de Poisson em variedades riemannianas e estimativas do primeiro autovalor

Klaser, Patrícia Kruse January 2010 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor de Dirichlet para dom nios multiplamente conexos contidos em variedades riemannianas. Essas estimativas consideram o supremo da curvatura seccional da variedade e a curvatura do bordo do domínio. Para obter os resultados, usa-se uma estimativa C0 para solucões da equação de Poisson. / Lower bounds for the rst Dirichlet eigenvalue are presented. We consider multiply connected domains in riemannian manifolds. The estimates are obtained using hypothesis on the supremum of the manifold's sectional curvature and on the domain's boundary curvature. C0 estimates for solutions of Poissons equation are used to prove the results.
4

Teoremas de comparação e uma aplicação a estimativa do primeiro autovalor

Nunes, Adilson da Silva January 2014 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor do problema de Dirichlet para o Laplaciano para domínios relativamente compactos contidos em variedades riemannianas. Essas estimativas são obtidas com hipóteses sobre a curvatura seccional ou a curvatura de Ricci radial e a curvatura do bordo do domínio. / This paper deals of lower estimates for the first eigenvalue of the Dirichlet problem for the Laplacian for relatively compact domains contained in Riemannian manifolds. These estimates are obtained with assumptions on the sectional or Ricci radial curvature and the curvature of the boundary of the domain.
5

Equação de Poisson em variedades riemannianas e estimativas do primeiro autovalor

Klaser, Patrícia Kruse January 2010 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor de Dirichlet para dom nios multiplamente conexos contidos em variedades riemannianas. Essas estimativas consideram o supremo da curvatura seccional da variedade e a curvatura do bordo do domínio. Para obter os resultados, usa-se uma estimativa C0 para solucões da equação de Poisson. / Lower bounds for the rst Dirichlet eigenvalue are presented. We consider multiply connected domains in riemannian manifolds. The estimates are obtained using hypothesis on the supremum of the manifold's sectional curvature and on the domain's boundary curvature. C0 estimates for solutions of Poissons equation are used to prove the results.
6

Decaimento do primeiro autovalor do operador de Laplace-Beltrami em superfÃcies de nÃvel analÃticas na esfera / Decay of the first eigenvalue of the Laplace-Beltrami operator on analytical level surfaces on the ball

Josà AnastÃcio de Oliveira 24 May 2016 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Neste texto, serà apresentado um resultado proposto por Paulo Cordaro e Jorge Hounie sobre o decaimente do primeiro autovalor do operador de Laplace-Beltrami em uma superfÃcie de nÃvel conexa em Sn+1, n ≥1. Esta dissertaÃÃo baseia-se no artigo "The First Eingenvalue of Analytic Level Surfaces on Spheres"de Sagun Chanillo (Mathematical Reseach Letters, vol 1 (1994), p. 159-166). / In the text, will presented one resultad proposed by Paulo Cordaro and Jorge Hounie concerning the possible rate of decay of the first eigenvalue of Laplace-Beltrami operator on a level surface connected in Sn+1, n ≥ 1 This thesis is basead on the paper "The First Eingenvalue of Analytic Level Surfaces on Spheres"of Sagun Chanillo (Mathematical Reseach Letters, vol. 1 (1994), p. 159-166).
7

Teoremas de comparação e uma aplicação a estimativa do primeiro autovalor

Nunes, Adilson da Silva January 2014 (has links)
Este trabalho trata de estimativas inferiores para o primeiro autovalor do problema de Dirichlet para o Laplaciano para domínios relativamente compactos contidos em variedades riemannianas. Essas estimativas são obtidas com hipóteses sobre a curvatura seccional ou a curvatura de Ricci radial e a curvatura do bordo do domínio. / This paper deals of lower estimates for the first eigenvalue of the Dirichlet problem for the Laplacian for relatively compact domains contained in Riemannian manifolds. These estimates are obtained with assumptions on the sectional or Ricci radial curvature and the curvature of the boundary of the domain.
8

A Faber-Krahn-type Inequality for Regular Trees

Leydold, Josef January 1996 (has links) (PDF)
In the last years some results for the Laplacian on manifolds have been shown to hold also for the graph Laplacian, e.g. Courant's nodal domain theorem or Cheeger's inequality. Friedman (Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (3), pp. 487-525, 1993) described the idea of a ``graph with boundary". With this concept it is possible to formulate Dirichlet and Neumann eigenvalue problems. Friedman also conjectured another ``classical" result for manifolds, the Faber-Krahn theorem, for regular bounded trees with boundary. The Faber-Krahn theorem states that among all bounded domains $D \subset R^n$ with fixed volume, a ball has lowest first Dirichlet eigenvalue. In this paper we show such a result for regular trees by using a rearrangement technique. We give restrictive conditions for trees with boundary where the first Dirichlet eigenvalue is minimized for a given "volume". Amazingly Friedman's conjecture is false, i.e. in general these trees are not ``balls". But we will show that these are similar to ``balls". (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
9

The Geometry of Regular Trees with the Faber-Krahn Property

Leydold, Josef January 1998 (has links) (PDF)
In this paper we prove a Faber-Krahn-type inequality for regular trees and give a complete characterization of extremal trees. It extends a former result of the author. The main tools are rearrangements and perturbation of regular trees. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
10

A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy / A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy

Francisco de Assiss Benjamim Filho 25 June 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante. / This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.

Page generated in 0.074 seconds