• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon Nanomaterials Deposition in an Alumina Microcombustor

Kellie, Benjamin M. 25 June 2012 (has links)
No description available.
2

CHARACTERIZATION OF METHANE-AIR DIFFUSION FLAMES FOR FLAME SYNTHESIS APPLICATION THROUGH OPTICAL DIAGNOSTICS

Diao, Zhaojin 01 January 2018 (has links)
Flame synthesis is a growing field of research aiming at forming new materials and coatings through injection of seed materials into a flame. Accurate prediction of the thermal structure of these flames requires detailed information on the radiative properties and a thorough understanding of the governing combustion processes. The objective of this work is to establish a basic optical diagnostic characterization of different methane-air diffusion flames of different complexity. The basic principles are developed and demonstrated at a rotational symmetric co-flow burner and finally applied to a burner consisting of six clustered microflames which is designed for future flame synthesis work. This work focuses on the demonstration of the optical techniques for characterizing the optical emissions from diffusion flames and of the proposed method for the determination of radiating species properties from these optical measurements. In the co-flow diffusion flame setup, the fuel of methane diluted with nitrogen is provided through an inner tube while the air is applied through an outer duct surrounding the fuel nozzle. Filtered imaging and spectrally resolved measurements of the chemiluminescence of CH* and C2* and of water emission were conducted. A procedure for using the HITRAN database to support the spectroscopic analysis of the water emission was developed. In the six clustered microflames burner setup, the burner consisted of six micro-nozzles arranged in a circle surrounding a central nozzle through which air and TaN seed particles with sizes between 0.3 and 3 μm were injected. Spectrally resolved measurements of the chemiluminescence of CH* and C2* were conducted for temperature measurements. Imaging results obtained from a spectral integration of the molecular emission were compared to results from Japanese collaborators who applied a tomographic analysis method to filtered emission measurements of CH* emission which can yield spatially resolved three dimensional mapping of the flame front. The analysis of the spatial distribution of the integrated band emission of CH* and C2* showed that the emission of both species is generated at the same locations in the flame which are the thin flame sheets shown in the tomography results of CH*. The ratio of the C2* and the CH* emission from the emission spectroscopy measurements was used to determine a local equivalence ratio through empirically derived correlations for premixed flames reported in literature. Rotational and vibrational temperature distributions of CH* and C2* radicals throughout the entire flame were determined from the spectrally resolved emission from CH* and C2*. The temperatures of TaN seed particles were characterized using VIS-NIR emission spectra while varying fuel-air flow rates. The temperature profiles of the particles at various heights above the base of the central nozzle, obtained by their VIS-NIR continuum emission, showed a well-defined constant temperature region that extended well beyond the actual flame front and changed as fuel and oxidizer flow rates were varied. The results demonstrate the ability to control the duration to which seed particles are subjected to high temperature reactions by adjusting fuel and oxidizer flow rates in the clustered microflames burner.
3

FABRICATION OF VERTICALLY ALIGNED CARBON NANOTUBES AND HORIZONTAL NANO-STRUCTURES

Hu, Wenchong 01 January 2002 (has links)
Fabrication of ordered anodic alumina nanopore arrays and anodization parameters including electrolyte, concentration, voltage, temperature and time have been investigated. Cobalt nanoparticles were electrodeposited at the bottom of the pores. Vertically aligned, open-tipped multi-walled carbon nanotube arrays of high density and uniformity were synthesized via a flame method on silicon substrates using a nanoporous template of anodized aluminum oxide. The diameter and length of the nanotubes are controlled by the geometry of the aluminum oxide template. It is the cobalt catalyst particles, not the porous aluminum templates, help the growth of carbon nanotubes through graphitization and bonding of carbon nanotubes to the silicon substrates. Fabrication of nano-structures has been demonstrated. Nano-trenches of 20 nm have been achieved using single-walled nanotube bundles as shadow masks, which were aligned across electrodes under high frequency AC voltage.
4

Combustion Synthesis of Nanomaterials Using Various Flame Configurations

Ismail, Mohamed 02 1900 (has links)
Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The modified CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases within these regions, with a slight increase in the axial velocity due to the precursor injection. This led to more uniformity in particle size distribution of the synthesized nanoparticles with the poppet valve (first modification). The double-slit modification improved the uniformity of generated nanoparticles at a very wide range of stable experimental conditions. Images of OH fluorescence showed that flames are tightly attached to the burner tip and TTIP has no influence on these flames structures. The particle size was slightly affected by the operating conditions. The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate and high temperature residence time of the precursor vapor. For ethylene and methane flames, the anatase content is proportional to the equivalence ratio, whereas it is inversely proportional in the case of propane flames. The anatase content reduced by 8% as we changed Re between 8,000 and 19,000, implying that the Re has a slight effect on the anatase content. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ >1.6) for C2H4, and at low equivalence ratios (φ <1.3) for the C3H8 flame. Concerning advanced nanoparticle synthesis, a multiple diffusion burner and flame spray pyrolysis (FSP) were adopted in this study to investigate the effect of doping/coating on TiO2 nanoparticles. The nanoparticles were characterized by the previously mentioned techniques in addition to thermogravimetric analysis (TGA) for carbon content, X-ray photoelectron spectroscopy (XPS) for surface chemistry, ultraviolet-visible spectroscopy (UV-vis) for light absorbance, inductively coupled plasma (ICP) for metal traces, and superconducting quantum interference device (SQUID) for magnetic properties. Results from multi diffusion burner show that doping TiO2 with vanadium changes the phase from anatase to rutile while doping and coating with carbon or SiO2 does not affect the phase. Doping with iron reduces the band gab of TiO2 particles by reducing the conduction band. FSP results show that iron doping changes the valance band of the nanoparticles and enhances their paramagnetic behavior as well as better light absorption than pure titania, which make these particles good candidates for photocatalytic applications.
5

Growth Model, Synthesis of Carbon Nanostructures and Alteration of Surface Properties Using Them

Naha, Sayangdev 26 August 2008 (has links)
Flame synthesis is recognized as a much cheaper and higher throughput process for carbon nanotube/nanofiber (CNT/CNF) production compared to conventional catalytic processes like chemical vapor deposition (CVD). Nanostructured carbon materials, such as carbon nanotubes and nanofibers, exhibit superhydrophobic behavior over a range of pH values, including for corrosive liquids. Part of this research reports the development of a rapid on-demand process for the synthesis of superhydrophobic surfaces on silicon (Si) discs using an ethylene-air nonpremixed flame. Such superhydrophobic behavior, combined with increase in effective surface area due to carbon nanostructure (CNS) deposition and corresponding desirable size (nanoscale roughness) attract the growth and attachment of microbial colonies to these CNS-enhanced substrates. This has potentially high-impact application in microbial fuel cells (MiFCs) whereby stainless steel (SS) meshes coated with flame-deposited CNS are used as anodes and the electrons produced by attaching biofilms can generate electricity in a fuel cell. However, despite such and many other applications and promise of carbon nanotubes (CNTs), their production is generally based on empirical principles. There are only a few CNT formation models that predict the dependence of CNT growth on various synthesis parameters. Typically, these do not incorporate a detailed mechanistic consideration of the various processes that are involved during CNT synthesis. Herein, this need is addressed and a model is presented for catalytic CNT growth that integrates various interdependent physical and chemical mechanisms involved in CNT production. It is validated by comparing its predictions with experimental measurements for CVD synthesis of CNTs and a concise parametric study is presented. The results are extrapolated for flame synthesis that is recognized as a desirable cost-effective process for the bulk synthesis of CNTs, as already mentioned. The last part of this dissertation discusses an extension of the CNT growth model to silicon nanowire/nanowhisker (SiNW) synthesis. SiNWs are synthesized by a number of methods — catalysis by a metal (involving vapor-liquid-solid or VLS growth mode), molecular beam epitaxy, thermal evaporation and laser ablation to name a few. Our model pertains to metal-catalyzed VLS growth mode. / Ph. D.
6

IN-SITU SMALL ANGLE X-RAY SCATTERING STUDIES OF CONTINUOUS NANO-PARTICLE SYNTHESIS IN PREMIXED AND DIFFUSION FLAMES

AGASHE, NIKHIL R. 06 October 2004 (has links)
No description available.
7

Development of Calcium-Based Durable Sorbents with High Carbon Dioxide Uptake Efficiency at High Temperatures

Lu, Hong 04 August 2009 (has links)
No description available.

Page generated in 0.0826 seconds