171 |
Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent CombustionYuen, Frank Tat Cheong 03 March 2010 (has links)
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from Φ=0.7 to 1.0 for propane flames, and from Φ=0.6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/SL regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dκ term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.
|
172 |
Flame stabilization by a plasma driven radical jet in a high speed flowChoi, Woong-Sik 18 May 2009 (has links)
In current afterburners combustion is stabilized by the high temperature, recirculating region behind bluff body flame holders, such as V-gutters. Blocking the high speed flow with bluff bodies causes a significant pressure drop, and heating the flame holder by the hot combustion product causes a thermal signature, which is a critical problem in a military jet. To reduce these problems, ignition methods using a high frequency (HF) spark discharge, or a radical jet generator (RJG) were developed. The HF discharge ignited and stabilized a flame successfully in a premixed methane-air flow. The electrical power consumption was very small compared to the combustion heat release, as long as the operating velocity was relatively low. However, a theoretical study showed that the ratio of the electrical power consumption to the heat generation by the stabilized flame increases rapidly with increasing flow velocity. For flame stabilization in a high velocity flow, the developed RJG showed much better performance than direct exposure to a plasma. The present study investigated the characteristics of a radical jet produced in a RJG and injected into a main combustor. The limits of flame stabilization by this jet was measured experimentally, and compared to those of bluff body flame holders. The flame holding performance of the radical jet was also experimentally compared to that of a thermal jet. The effect of radicals on flame stabilization was examined using CHEMKIN, and the limit of flame stabilization by the radical jet was estimated for a simple flow configuration using an approximate solution. The results suggest that the reduction of local spontaneous ignition delay time by active species in the radical jet and the longer length of a typical radical jet compared to the dimension of the recirculation zone behind a bluff body increases the maximum velocity at which a flame can be stabilized.
|
173 |
Influence of certain cations on the intensities of spectral emissions observed in flame excitationWeaver, Robert Dunning. January 1955 (has links)
Call number: LD2668 .T4 1955 W43 / Master of Science
|
174 |
Attachment point characteristics and modeling of shear layer stabilized flames in an annular, swirling flowfieldFoley, Christopher William 07 January 2016 (has links)
The focus of this work was to develop a deeper understanding of the mechanisms of flame stabilization and extinction for shear layer stabilized, premixed flames. Planar experimental studies were performed in the attachment point region of an inner shear layer stabilized flame in an annular, swirl combustor. Through high resolution, simultaneous PIV & CH-PLIF measurements, the instantaneous flow field and flame position was captured enabling the characterization of 2D flame stretch and velocity conditions in the attachment point region. In addition, measurements performed at various equivalence ratios and premixer velocities provided insight into the physics governing blowoff. Most notably, these studies showed that as lean blowoff conditions are approached by decreasing equivalence ratio, the mean stretch rates near the attachment point decrease but remain positive throughout the measurement domain. In fact, compared to numerically calculated extinction stretch rates, the flame becomes less critically stretched as equivalence ratio is decreased. Also, investigation of the flame structure at the leading edge of the flame showed strong evidence that the flame is edge flame stabilized. This was supported by inspection of the CH-PLIF images, which showed the CH-layer oriented tangent to the flow field and terminating abruptly at the leading edge. Lastly, the flame anchoring location was observed to be highly robust as the mean flame edge flow conditions and mean location of leading edge of the flame were insensitive to changes in equivalence ratio, remaining nearly constant for values ranging from 0.9 to 1.1. However, at the leanest equivalence ratio of 0.8, the flame leading edge was located farther downstream and subject to much higher flow velocities. These results thus suggest that blowoff is the result of a kinematic balance and not directly from stretch induced flame extinction.
|
175 |
Volumetric PIV and OH PLIF imaging in the far field of nonpremixed jet flamesGamba, Mirko 03 September 2009 (has links)
Cinematographic stereoscopic PIV, combined with Taylor's frozen flow hypothesis, is used to generate three-dimensional (3D) quasi-instantaneous pseudo volumes
of the three-component (3C) velocity field in the far field of turbulent nonpremixed
jet flames at jet exit Reynolds number Reδ in the range 8,000-15,300. The effect of heat release, however, lowers the local (i.e., based on local properties) Reynolds number to the range 1,500-2,500. The 3D data enable computation of all nine components of the velocity gradient tensor ∇u from which the major 3D kinematic
quantities, such as strain rate, vorticity, dissipation and dilatation, are computed.
The volumetric PIV is combined with simultaneously acquired 10 Hz OH planar
laser-induced fluorescence (PLIF). A single plane of the OH distribution is imaged
on the center-plane of the volume and provides an approximate planar representation
of the instantaneous reaction zone. The pseudo-volumes are reconstructed from
temporally and spatially resolved kilohertz-rate 3C velocity field measurements on
an end-view plane (perpendicular to the jet flame axis) invoking Taylor's hypothesis.
The interpretation of the measurements is therefore twofold: the measurements provide
a time-series representation of all nine velocity gradients on a single end-view plane or, after volumetric reconstruction, they offer a volumetric representation, albeit
approximate, of the spatial structure of the flow. The combined datasets enable
investigation of the fine-scale spatial structure of turbulence, the effect of the reaction
zone on these structures and the relationship between the jet kinematics and the
reaction zone. Emphasis is placed on the energy dissipation field and on the presence
and role of dilatation. Statistics of the components of the velocity gradient tensor
and its derived quantities show that these jet flames exhibit strong similarities to incompressible
turbulent flows, such as in the distribution of the principal strain rates
and strain-vorticity alignment. However, the velocity-gradient statistics show that
these jet flames do not exhibit small-scale isotropy but exhibit a strong preference
for high-magnitude radial gradients, which are attributed to regions of strong shear
induced by the reaction zone. The pseudo volumes reveal that the intense-vorticity
field is organized in two major classes of structures: tube-like away from the reaction
zone (the classical worms observed in incompressible turbulence) and sheet-like in
the vicinity of the local reaction zone. Sheet-like structures are, however, the dominant
ones. Moreover, unlike incompressible turbulence where sheet-like dissipative
structures enfold, but don't coincide with, clusters of tube-like vortical structures, it
is observed that the sheet-like intense-vorticity structures tend to closely correspond
to sheet-like structures of high dissipation. The primary reason for these features is
believed to be due to the stabilizing effect of heat release on these relatively low local
Reynolds number jet flames. It is further observed that regions of both positive and
negative dilatation are present and tend to be associated with the oxidizer and fuel
sides of the OH zones, respectively. These dilatation features are mostly organized in
small-scale, short-lived blobby structures that are believed to be mainly due to convection
of regions of varying density rather than to instantaneous heat release rate.
A model of the dilatation field developed by previous researchers using a flamelet
approximation of the reaction zone was used to provide insights into the observed
features of the dilatation field. Measurements in an unsteady laminar nonpremixed
jet flame where dilatation is expected to be absent support the simplified model and
indicate that the observed structure of dilatation is not just a result of residual noise
in the measurements, although resolution effects might mask some of the features of
the dilatation field. The field of kinetic energy dissipation is further investigated by
decomposing the instantaneous dissipation field into the solenoidal, dilatational and
inhomogeneous components. Analysis of the current measurements reveals that the
effect of dilatation on dissipation is minimal at all times (it contributes to the mean
kinetic energy dissipation only by about 5-10%). Most of the mean dissipation
arises from the solenoidal component. On average, the inhomogeneous component
is nearly zero, although instantaneously it can be the dominant component. Two
mechanisms are believed to be important for energy dissipation. Near the reaction
zone, where the stabilizing effect of heat release generates layers of laminar-like shear
and hence high vorticity, solenoidal dissipation (which is proportional to the enstrophy)
dominates. In the rest of the ow the inhomogeneous component dominates in
regions subjected to complex systems of nested vortical structures where the mutual
interaction of interwoven vortical structures in intervening regions generates intense
dissipation. / text
|
176 |
Numerical studies of reacting and non-reacting underexpanded sonic jetsBirkby, Paul January 1998 (has links)
No description available.
|
177 |
DETERMINATION OF HYDROXYL RADICAL CONCENTRATION PROFILES IN THE LAMINAR, OPPOSED-JET DIFFUSION FLAME.Anderson, William E. (William Edward) January 1984 (has links)
No description available.
|
178 |
The measurement of dimethylsulphide precursors in marine and terrestrial floraRussell, Duncan William January 1996 (has links)
No description available.
|
179 |
Combustion oscillations in sudden-expansion flowsDe Zilwa, Shane Ranel Noel January 1999 (has links)
No description available.
|
180 |
Combustion Wave Propagation Regimes in a Channel equipped with an Array of Cross-flow Cylindrical ObstaclesPinos, THOMAS 19 July 2013 (has links)
Flame propagation through a channel equipped with obstacles was studied experimentally. Two types of obstacle geometries were investigated, i.e., wall-mounted cross-flow cylinders and fence-type obstacles mounted on the top and bottom channel surfaces. The motivation for this research is its applications to both high-speed propulsion and industrial explosion safety.
The effect of obstacle distribution and blockage ratio on flame acceleration was investigated in a 2.54cm x 7.6cm “narrow” channel with wall-mounted cross-flow cylindrical obstacles. The cylinders were arranged in a “staggered” or “inline” pattern, with blockage ratios of 0.5 and 0.67. Schlieren images were used to study the flame shape and its leading edge velocity for a range of fuel-air mixtures compositions. It was determined that initial flame propagation occurs faster in higher blockage ratios due to the higher frequency perturbation to the flow. Flame acceleration led to different quasi-steady flame and detonation propagation regimes. In general, higher final steady flame velocities were reached in the lower blockage ratios, and detonation limits were found to be influenced by the geometry.
The influence of channel width on flame acceleration was also determined using fence-type obstacles with a single blockage ratio. Experiments were performed in a 2.54cm x 7.6cm and 7.6cm x 7.6cm channel. Schlieren images were again used to study the flame shape and to obtain leading edge velocity. The flame tip was found to have a parabolic profile across the channel width for the narrower channel and flatter profile in the wider channel. It was determined that the channel width has a weak effect on the flame velocity down the channel length. As such, flame acceleration was initially only slightly more pronounced in the narrow channel before the reverse became true later in the wide channel. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-07-18 21:13:40.436
|
Page generated in 0.043 seconds