1 |
Use of FDM Components for Ion Beam and Vacuum ApplicationsTridas, Eric Miguel 10 November 2015 (has links)
This study focuses on novel approaches to the modeling and construction of devices used in ion beam and vacuum systems. Turbulent computational fluid dynamics simulations were performed to model the air flow into an ion funnel system. The results of these simulations were coupled one-way with electrodynamics simulations of the fields generated by the ion funnel. Using the turbulence kinetic energy (k), a spatially varying estimation of the fluctuating component of the velocity field was calculated. These resulting simulations more accurately predicted the ion transmission through the system. Using fused deposition modeling (FDM) novel construction methods for the ion funnel and the vacuum chamber components the ion funnel system utilizes were developed. An FDM fabricated frame, in the shape of the ion funnel, was quickly and inexpensively produced. This frame supported a flexible printed circuit board that served as both the lenses of the ion funnel and power distribution circuit. The transmission of ions was as good as the traditionally constructed ion funnel. The device cost and weighed less and had lower intrinsic impedance, requiring less power to be driven. FDM was also used to produce vacuum components by post-processing using electroplating. Initial tests to determine whether electroplating would adequately produce a hermetic seal for vacuum components were performed. It was observed that thinner plated components could not withstand the stresses required from the gaskets and flanges to adequately seal, subsequently cracking. Thicker samples adequately sealed against atmosphere and maintained this seal over the entire test period. A proof of concept KF-25 full nipple was produced and processed using electroplating. The device was able to reach and ultimate pressure of 1 x 10-6 Torr, however, it was not able to reach the ultimate pressure of the chamber, which was 5 x 10-7 Torr due to the inability to be adequately cleaned of contaminant water.
|
2 |
Impact of Device Parametric Tolerances on Current Sharing Behavior of a SiC Half-Bridge Power ModuleWatt, Grace R. 22 January 2020 (has links)
This paper describes the design, fabrication, and testing of a 1.2 kV, 6.5 mΩ, half-bridge, SiC MOSFET power module to evaluate the impact of parametric device tolerances on electrical and thermal performance. Paralleling power devices increases current handling capability for the same bus voltage. However, inherent parametric differences among dies leads to unbalanced current sharing causing overstress and overheating. In this design, a symmetrical DBC layout is utilized to balance parasitic inductances in the current pathways of paralleled dies to isolate the impact of parametric tolerances. In addition, the paper investigates the benefits of flexible PCB in place of wire bonds for the gate loop interconnection to reduce and minimize the gate loop inductance. The balanced modules have dies with similar threshold voltages while the unbalanced modules have dies with unbalanced threshold voltages to force unbalanced current sharing. The modules were placed into a clamped inductive DPT and a continuous, boost converter. Rogowski coils looped under the wire bonds of the bottom switch dies to observe current behavior. Four modules performed continuously for least 10 minutes at 200 V, 37.6 A input, at 30 kHz with 50% duty cycle. The modules could not perform for multiple minutes at 250 V with 47.7 A (23 A/die). The energy loss differential for a ~17% difference in threshold voltage ranged from 4.52% (~10 µJ) to -30.9% (~30 µJ). The energy loss differential for a ~0.5% difference in V_th ranged from -2.26% (~8 µJ) to 5.66% (~10 µJ). The loss differential was dependent on whether current unbalance due to on-state resistance compensated current unbalance due to threshold voltage. While device parametric tolerances are inherent, if the higher threshold voltage devices can be paired with devices that have higher on-state resistance, the overall loss differential may perform similarly to well-matched dies. Lastly, the most consistently performing unbalanced module with 17.7% difference in V_th had 119.9 µJ more energy loss and was 22.2°C hotter during continuous testing than the most consistently performing balanced module with 0.6% difference inV_th. / Master of Science / This paper describes the design, construction, and testing of advanced power devices for use in electric vehicles. Power devices are necessary to supply electricity to different parts of the vehicle; for example, energy is stored in a battery as direct current (DC) power, but the motor requires alternating current (AC) power. Therefore, power electronics can alter the energy to be delivered as DC or AC. In order to carry more power, multiple devices can be used together just as 10 people can carry more weight than 1 person. However, because the devices are not perfect, there can be slight differences in the performance of one device to another. One device may have to carry more current than another device which could cause failure earlier than intended. In this research project, multiple power devices were placed into a package, or "module." In a control module, the devices were selected with similar properties to one another. In an experimental module, the devices were selected with properties very different from one another. It was determined that the when the devices were 17.7% difference, there was 119.9 µJ more energy loss and it was 22.2°C hotter than when the difference was only 0.6%. However, the severity of the difference was dependent on how multiple device characteristics interacted with one another. It may be possible to compensate some of the impact of device differences in one characteristic with opposing differences in another device characteristic.
|
Page generated in 0.0405 seconds