• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 32
  • 8
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 266
  • 266
  • 105
  • 95
  • 58
  • 45
  • 35
  • 32
  • 30
  • 29
  • 24
  • 23
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Linear time invariant models for integrated flight and rotor control

Olcer, Fahri Ersel 08 July 2011 (has links)
Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control studies.
152

Design and Testing of a Flight Control System for Unstable Subscale Aircraft

Sobron, Alejandro January 2015 (has links)
The primary objective of this thesis was to study, implement, and test low-cost electronic flight control systems (FCS) in remotely piloted subscale research aircraft with relaxed static longitudinal stability. Even though this implementation was carried out in small, simplified test-bed aircraft, it was designed with the aim of being installed later in more complex demonstrator aircraft such as the Generic Future Fighter concept demonstrator project. The recent boom of the unmanned aircraft market has led to the appearance of numerous electronic FCS designed for small-scale vehicles and even hobbyist-type model aircraft. Therefore, the purpose was not to develop a new FCS from scratch, but rather to take advantage of the available technology and to examine the performance of different commercial off-the-shelf (COTS) low-cost systems in statically unstable aircraft models. Two different systems were integrated, calibrated and tested: a simple, gyroscope-based, single-axis controller, and an advanced flight controller with a complete suite of sensors, including a specifically manufactured angle-of-attack transducer. A flight testing methodology and appropriate flight-test data analysis tools were also developed. The satisfactory results are discussed for different flight control laws, and the controller tuning procedure is described. On the other hand, the different test-bed aircraft were analysed from a theoretical point of view by using common aircraft-design methods and conventional preliminary-design tools. The theoretical models were integrated into a flight dynamics simulator, which was compared with flight-test data obtaining a reasonable qualitative correlation. Possible FCS modifications are discussed and some future implementations are proposed, such as the integration of the angle-of-attack in the control laws.
153

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.
154

Neural network based adaptive control and its applications to aerial vehicles

Lee, Seungjae 05 1900 (has links)
No description available.
155

A neuro-adaptive autopilot design for guided munitions

Sharma, Manu 05 1900 (has links)
No description available.
156

Knowledge-Based Flight Control System Integration in RAPID

Escolano Andrés, Inés January 2015 (has links)
This thesis work presents a parametrized integration of the flight control system within RAPID by means of the automation in CATIA V5, using Knowledge Pattern. Nowadays aircraft’s design and development processes are not only time-consuming but also incur high economic cost. In addition, system integration is highly a multi-disciplinary design process which often involves a large number of different discipline teams working at the same time and space. The main objective of this thesis is to investigate how CAD (Computer Aided Design) software can be used in the early design stages to define the flight control system integration. The purpose of this work to improve the functionality of an in house produced aircraft conceptual design tool carried out at the Division of Fluid and Mechatronic Systems, Linköping University. The work consists of preliminary integration of the RAPID flight control system and the hydraulics associated to it. By defining several reusable templates, the automatic definition of a flight control system within the RAPID aircraft has been achieved. Moreover it is a parametrical model which allows the user to modify a high number of features as desired to enhance the design process. For this, a user interface in Microsoft Excel connected to CATIA has also been attained.
157

Meta aircraft flight dynamics and controls

Montalvo, Carlos 22 May 2014 (has links)
The field of mobile robotic systems has become a rich area of research and design. These systems can navigate difficult terrain using multiple actuators with conventional ambulation, by hopping, jumping, or for aerial vehicles, using flapping wings, propellers, or engines to maintain aerial flight. Unmanned Aerial Systems(UAS) have been used extensively in both military and civilian applications such as reconnaissance or search and rescue missions. For air vehicles, range and endurance is a crucial design parameter as it governs which missions can be performed by a particular vehicle. In addition, when considering the presence of external disturbances such as atmospheric winds, these missions can be even more challenging. Meta aircraft technologies is one area of research that can increase range and endurance by taking advantage of an increase in L/D. A meta aircraft is an aircraft composed of smaller individual aircraft connected together through a similar connection mechanism that can potentially transfer power, loads, or information. This dissertation examines meta aircraft flight dynamics and controls for a variety of different configurations. First, the dynamics of meta aircraft systems are explored with a focus on the changes in fundamental aircraft modes and flexible modes of the system. Specifically, when aircraft are connected, the fundamental modes change, can become overdamped or even unstable. In addition, connected aircraft exhibit complex flexible modes and mode shapes that change based on the parameters of the connection joint and the number of connected aircraft. Second, the connection dynamics are explored for meta aircraft where the vehicles are connected wing tip to wing tip using passive magnets with a particular focus on modeling the connection event between aircraft in a practical environment. It is found that a multi-stage connection control law with position and velocity feedback from GPS and connection point image feedback from a camera yields adequate connection performance in the presence of realistic sensor errors and atmospheric winds. Furthermore, atmosphericwinds with low frequency gusts at the intensity normally found in a realistic environment pose the most significant threat to the success of connection. The frequency content of the atmospheric disturbance is an important variable to determine success of connection. Finally, the geometry of magnets that create the connection force field can alter connection rates. Finally, the performance of a generic meta aircraft system are explored. Using a simplified rigid body model to approximate any meta aircraft configuration, adequate connection is achieved in the presence of realistic winds. Using this controller overall performance is studied. In winds, there is an overall decrease in outer loop performance for meta aircraft. However, inner loop performance increases for meta aircraft. In addition, the aerodynamic benefit of different configurations are investigated. Wing to wing tip connected flight provides the most benefit in terms of average increased Lift to Drag ratio while tip to tail configurations drop the Lift to Drag ratio as trailing aircraft fly in the downwash of the leading aircraft.
158

Robustness Analysis of Simultaneous Stabilization and its Applications in Flight Control

Saeedi, Yasaman 25 August 2011 (has links)
Simultaneous stabilization is an important problem in the design of robust controllers. It is the problem of designing a single feedback controller which will simultaneously stabilize every member of a finite collection of liner time-invariant systems. This provides simplicity and reliability which is desirable in aerospace applications. It can be used as a back-up control system in sophisticated airplanes, or an inexpensive primary one for small aircraft. In this work the robustness of the simultaneous stabilization problem, known as the Robust Simultaneous Stabilization (RSS) problem, is addressed. First, an optimization methodology for finding a solution to the Simultaneous Stabilization (SS) problem is proposed. Next, in order to provide simultaneous stability while maximizing the stability robustness bounds, a multiple-robustness optimization design methodology for the RSS problem is presented. The two proposed design methodologies are then compared in terms of robustness of the designed controller.
159

Optimal aeroelastic trim for rotorcraft with constrained, non-unique trim solutions

Schank, Troy C. 15 February 2008 (has links)
New rotorcraft configurations are emerging, such as the optimal speed helicopter and slowed-rotor compound helicopter which, due to variable rotor speed and redundant lifting components, have non-unique trim solution spaces. The combination of controls and rotor speed that produce the best steady-flight condition is sought among all the possible solutions. This work develops the concept of optimal rotorcraft trim and explores its application to advanced rotorcraft configurations with non-unique, constrained trim solutions. The optimal trim work is based on the nonlinear programming method of the generalized reduced gradient (GRG) and is integrated into a multi-body, comprehensive aeroelastic rotorcraft code. In addition to the concept of optimal trim, two further developments are presented that allow the extension of optimal trim to rotorcraft with rotors that operate over a wide range of rotor speeds. The first is the concept of variable rotor speed trim with special application to rotors operating in steady autorotation. The technique developed herein treats rotor speed as a trim variable and uses a Newton-Raphson iterative method to drive the rotor speed to zero average torque simultaneously with other dependent trim variables. The second additional contribution of this thesis is a novel way to rapidly approximate elastic rotor blade stresses and strains in the aeroelastic trim analysis for structural constraints. For rotors that operate over large angular velocity ranges, rotor resonance and increased flapping conditions are encountered that can drive the maximum cross-sectional stress and strain to levels beyond endurance limits; such conditions must be avoided. The method developed herein captures the maximum cross-sectional stress/strain based on the trained response of an artificial neural network (ANN) surrogate as a function of 1-D beam forces and moments. The stresses/strains are computed simultaneously with the optimal trim and are used as constraints in the optimal trim solution. Finally, an optimal trim analysis is applied to a high-speed compound gyroplane configuration, which has two distinct rotor speed control methods, with the purpose of maximizing the vehicle cruise efficiency while maintaining rotor blade strain below endurance limit values.
160

Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation

Shankar, Praveen, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 155-158).

Page generated in 0.0488 seconds