• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 32
  • 8
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 269
  • 269
  • 108
  • 98
  • 60
  • 46
  • 35
  • 32
  • 30
  • 29
  • 24
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Control allocation as part of a fault-tolerant control architecture for UAVs

Basson, Lionel 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: The development of a control allocation system for use as part of a fault-tolerant control (FTC) system in unmanned aerial vehicles (UAVs) is presented. This system plays a vital role in minimising the possibility that a fault will necessitate the reconfiguration of the control, guidance or navigation systems of the aircraft by minimising the difference between the desired and achievable aircraft performance parameters. This is achieved by optimising the allocation of control effort commanded by the virtual actuators to the physical actuators present on the aircraft. A simple general six degree of freedom aircraft model is presented that contains all of the relevant terms needed to find the trim biases of the aircraft actuators and evaluate the performance of the virtual actuators. This model was used to develop a control allocation formulation that optimises the performance of the virtual actuators of the aircraft while minimising adverse effects and avoiding actuator saturation. The resulting problem formulation was formulated as a multi-objective optimisation problem which was solved using the sequential quadratic programming method. The control allocation system was practically implemented and tested. A number of failure categories of varying severity were defined and two aircraft with different levels of actuator redundancy were used to test the system. The control allocation algorithm was evaluated for each failure category, aircraft test case and for a number of differing control allocation system configurations. A number of enhancements were then made to the control allocation system which included adding frequency-based allocation and adapting the algorithm for an unconventional ducted-fan UAV. The control allocation system is shown to be applicable to a number of different conventional aircraft configurations with no alterations as well as being applicable to unconventional aircraft with minor alterations. The control allocation system is shown to be capable of handling both single and multiple actuator failures and the importance of actuator redundancy is highlighted as a factor that influences the effectiveness of control allocation. The control allocation system can be effectively used as part of a FTC system or as a tool that can be used to investigate control allocation and aircraft redundancy. / AFRIKAANSE OPSOMMING: Die ontwikkeling van ’n beheertoekenning sisteem vir gebruik as deel van ’n fout verdraagsame beheersisteem in onbemande lugvaartuie word voorgelê. Hierdie sisteem speel ’n essensiële rol in die vermindering van die moontlikheid dat ’n fout die herkonfigurasie van die beheer, bestuur of navigasiesisteme van die vaartuig tot gevolg sal hê, deur die verskil te verminder tussen die verlangde en bereikbare werkverrigtingsraamwerk van die vaartuig. Dit word bereik deur die optimisering van die toekenning van beheerpoging aangevoer deur die virtuele aktueerders na die fisiese aktueerders teenwoordig op die vaartuig. ’n Eenvoudige algemene ses grade van vryheid lugvaartuig model word voorgestel wat al die relevante terme bevat wat benodig word om die onewewigtigheid verstelling van die vaartuig se aktueerders te vind en die werksverrigting van die virtuele aktueerders te evalueer. Hierdie model is gebruik om ’n beheer toekenning formulering te ontwikkel wat die werkverrigting van die virtuele aktueerders van die vaartuig optimiseer terwyl nadelige gevolge verminder word asook aktueerder versadiging vermy word. Die gevolglike probleem formulering is omskryf as ’n multi-doel optimiserings probleem wat opgelos is deur gebruik van die sekwensiële kwadratiese programmerings metode. Die beheertoekenning sisteem is prakties geïmplementeer en getoets. ’n Aantal fout kategorieë van verskillende grade van erns is gedefinieer en twee vaartuie met verskillende vlakke van aktueerder oortolligheid is gebruik om die sisteem te toets. Die beheer toekenning algoritme is geëvalueer vir elke fout kategorie, vaartuig toetsgeval, asook vir ’n aantal verskillende beheertoekenning sisteem konfigurasies. ’n Aantal verbeterings is aangebring aan die beheertoekenning sisteem, naamlik die toevoeging van frekwensie gebaseerde toekenning en wysiging van die algoritme vir ’n onkonvensionele onbemande geleide waaier lugvaartuig. Die beheertoekenning sisteem is van toepassing op ’n aantal verskillende konvensionele vaartuig konfigurasies met geen verstellings asook van toepassing op onkonvensionele vaartuie met geringe verstellings. Die beheertoekenning sisteem kan beide enkel- en veelvoudige aktueerder tekortkominge hanteer en die belangrikheid van aktueerder oortolligheid is beklemtoon as ’n faktor wat die effektiwiteit van beheertoekenning beïnvloed. Die beheertoekenning sisteem kan effektief geïmplementeer word as deel van ’n fout verdraagsame beheersisteem of as ’n werktuig om beheertoekenning en vaartuig oortolligheid te ondersoek.
202

Flight control system for an autonomous parafoil

Van der Kolf, Gideon 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: This thesis presents the development of a flight control system (FCS) for an unmanned, unpowered parafoil and the integration with an existing parafoil system in collaboration with a team at the University of Cape Town (UCT). The main goal of the FCS is to autonomously guide the parafoil from an arbitrary deployment position to a desired landing target. A nonlinear 8 degrees of freedom (8-DOF) parafoil model by C. Redelinghuys is incorporated into a MATLAB Simulink simulation environment. The non-linear model is numerically linearised and modal decomposition techniques are used to analyse the natural modes of motion. All modes are determined to be stable but a poorly damped lateral payload relative twist mode is present which causes large payload yaw oscillations. The FCS is divided into stability augmentation, control and guidance subcomponents. Stability augmentation is proposed in the form of a yaw rate damper which provides artificial damping for the oscillatory payload twist mode. For control, a yaw rate controller is designed with the aim of a fast response while not exciting the payload twist oscillation. Subsequently, an existing guidance method is implemented for path following. Autonomous path planning and mission control logic is created, including an energy management (EM) method to eliminate excess height and a terminal guidance (TG) phase. The TG phase is the final turn before landing and is the last chance to influence landing accuracy. A TG algorithm is implemented which generates an optimal final turn and can be replanned en route to compensate for unknown wind and other disturbances. The FCS is implemented on existing avionics, integrated with the parafoil system and verified with hardware in the loop (HIL) simulations. Flight tests are presented but are limited to remote control (RC) tests that verify the integration of the avionics and the parafoil system and test preliminary FCS components. / AFRIKAANSE OPSOMMING: Hierdie tesis dra die ontwikkeling voor van ‘n vlug-beheerstelsel (VBS) vir ’n onbemande, onaangedrewe valskerm-sweeftuig (parafoil), asook die integrasie daarvan met ’n bestaande stelsel. Die projek is in samewerking met ’n span van die Universiteit van Kaapstad (UCT) uitgevoer. Die VBS se hoof doel is om die sweeftuig outonoom vanaf ’n arbitrêre beginpunt na ’n gewensde landingsteiken te lei. ’n Nie-lineêre 8 grade van vryheid sweeftuig model deur C. Redelinghuys is in die MATLAB Simulink omgewing geïnkorporeer. Die nie-lineêre model is numeries gelineariseer om ’n lineêre model te verkry, waarna die natuurlike gedrag van die tuig geanaliseer is. ’n Swak gedempte laterale draai ossillasie van die loonvrag is geïdentifiseer. Die VBS is opgedeel in stabiliteitstoevoeging, beheer en leiding. ’n Giertempo-demper (yaw rate damper) is as stabiliteitstoevoeging om die loonvrag ossillasie kunsmatig te demp, voorgestel. ’n Giertempo-beheerder is ontwerp met die klem op ’n vinnige reaksie terwyl die opwekking van die loonvrag ossillasie terselfdetyd verhoed word. Daarna is ’n bestaande metode vir trajekvolging geïmplementeer. Outonome padbeplanning en oorhoofse vlugplan logika is ontwikkel, insluitend ’n energie-bestuur (EB) metode, om van oortollige hoogte ontslae te raak, asook ’n terminale leiding (TL) metode. Die TL fase verwys na die finale draai voor landing en is die laaste kans om die landingsakkuraatheid te beïnvloed. ’n Bestaande TL algoritme is geïmplementeer wat ’n optimale trajek genereer en in staat is om vir wind en ander versteurings te kompenseer deur die trajek deurgaans te herbeplan. Die VBS is op bestaande avionika geïmplementeer, met die sweeftuigstelsel geïntegreer en met behulp van hardeware in die lus (HIL) simulasies geverifieer. Vlugtoetse is voorgedra, maar is egter beperk tot radio beheer vlugte wat die korrekte integrasie van die avionika en die voertuig toets, asook ’n beperkte aantal voormalige VBS toetse.
203

Méthodes de traitement innovantes pour les systèmes de commandes de vol / Innovative processing of anemometric and inertial data in the flight control systems

Cazes, Florian 28 March 2013 (has links)
Implantés pour la première fois en 1980, les systèmes de commandes de vol électriques (CDVE) équipent désormais tous les avions AIRBUS et constituent un standard industriel dans l’aviation civile. Les CDVE permettent notamment un meilleur contrôle de l’avion (lois de pilotage et pilote automatique plus évolués...) et la mise en place de fonctions spécifiques de protection de l’enveloppe de vol. Les objectifs des avionneurs, dans le cadre de l’amélioration globale des futurs appareils, s’orientent vers des appareils plus stables, plus maniables, moins coûteux et donc plus écologiques. Cela se traduit en particulier par l’augmentation de la disponibilité des systèmes de commande de vol. Actuellement, la solution la plus utilisée par les avionneurs consiste à augmenter la redondance et la dissimilarité matérielles. Ainsi, les paramètres de vol qui sont entre autres nécessaires au calcul des lois de pilotage, sont mesurés par plusieurs capteurs (par exemple trois sondes d’incidence, trois sondes pitot...). Pour chaque paramètre de vol, un choix ou un calcul doit être réalisé pour évincer les sources présentant un dysfonctionnement. Ceci permet de fournir une unique valeur aux autres systèmes de l’appareil tout en s’assurant sa disponibilité. Ce processus est appelé « consolidation ». L’objectif de la thèse est de réaliser des méthodes de détection de dysfonctionnements agissant sur chaque capteur puis de proposer une stratégie de fusion des informations, en vue de remplacer l’actuel processus de « consolidation ». L’idée principale consiste à créer des capteurs dits « logiciels », qui sont des estimateurs des paramètres de vol (mesurés par des capteurs externes de l’avion) utilisant d’autres paramètres de vol dissimilaires (en l’occurence des paramètres inertiels, mesurés par des capteurs différents et internes). La régression PLS (pour partial least squares) permet de réaliser cette estimation. Des stratégies de détection et des méthodes de fusion découlent de ses propriétés. / From the 80’s to today, all AIRBUS civil aircraft are equipped with electrical flight control systems (EFCS). This technology now constitutes an industrial standard for commercial applications. This allows a more sophisticated aircraft control (advanced flight laws, more available autopilot...) and the setting up of specific protection functions of the flight enveloppe. In the framework of a global aircraft optimisation, for future and upcoming programs, current research efforts are dedicated to a more easy-to-handle aircraft, more efficient and so on more environmentally-friendly, resulting in augmented EFCS availability. The industrial state of practice, for all aircraft manufacturers, is to develop high levels of hardware redundancy (more dissimilar sensors for instance). Therefore several sensors (for instance three angle of attack probes, three pitot probes) provide flight parameter measurements which are necessary for the computation of the flight laws, as an example. For each of these measurements, a choice or computation is performed to provide a unique and valid value among the redundant sensors. In parallel, a monitoring is done to discard a measure in case of a failure. Both processes are called « consolidation ». The aim of the Ph.D. is to provide new detection strategies to detect a failure on each sensor (monosensor monitoring) and then to design new data fusion methods to act as the actual « consolidation » process. The main idea proposes to create « software » sensors which actually are flight parameter estimators (measured by external sensors) created thanks to other dissimilar flight parameters (in our case inertial parameters, measured by inner sensors, from a different technology). The partial least squares regression (PLS) is used to perform this estimation. Detection strategies and fusion methods are following from its properties.
204

Development of a data collection system for small Unmanned Aerial Vehicles (UAVs)

Zhou, Yan January 2011 (has links)
Dissertation (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2011 / This paper presents the development of a data collection system for a small unmanned Aerial Vehicle (UAV) flight. The following three facets comprise of a UAV system: (1) a UAV aircraft; (2) onboard avionics; and (3) a ground control station subsystem (Taha et al., 2010:1). In this project, the UAV aircraft is based on the low-cost autonomous quad-rotator system named “Arducopter Quad”, where the onboard avionic system utilizes both an ArduPilot Mega (APM) on-board controller and IMU sensor shield, while the “Mission Planner” software operates as GCS software to gather essential flight data (Xiang & Tian, 2011:176). The approach provides the UAV system structure and both hardware and software with a small UAV data collection system, which is examined throughout the study. And introduce the concept of Arducopter dynamics for better understanding with its flight control. The study also considers the communication process between the UAV and the ground control station. The radio wave is an important aspect in the UAV data collection system (Austin, 2010:143). The literature review introduced the basis of the radio wave in respect of its travelling speed, and its characteristics of propagation, including how different frequencies will affect radio wave propagation. The aim of this project was to develop a platform for a small UAV real-time data collection system. The pendulum system was involved to simulate the “Roll” movement of the small UAV, while real-time IMU sensor data was successfully collected at ground control station (GCS), both serial communication and wireless communication, which was applied in the data collection process. The microwave generator interference test proves that the 2.4 GHz XBee module is capable of establishing reliable indoor communication between the APM controller and the GCS. The work of this project is towards development of additional health monitoring technology to prevent the safety issue of the small UAV. The data collection system can be used as basis for the future research of real-time health monitoring for various small UAVs.
205

Condition monitoring of a wing structure for an unmanned aerial vehicle (UAV)

Masango, Thubalakhe Patrick January 2015 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2015. / Currently non-destructive testing techniques for composite aircraft structures are disadvantaged when compared to online Structural Health Monitoring (SHM) systems that monitor the structure while in-service and give real time data. The present research work looks at developing a protocol for online structural health monitoring of a UAV wing structure using PVDF film sensors, especially including the monitoring of structural changes caused by defects. Different types of SHM techniques were studied in relation to carbon fibre composites. Laminate composite make-up and manufacturing process was investigated and vacuum infusion process was used to manufacture the samples that resemble the Guardian II wing structure, then the three-point bending test was used to determine the material properties. Digital Shearography was employed as a stationery non-destructive technique to determine the sensor to structure attachment, type and position of defects that affect the state of performance. Finite Element Analysis (FEA) was done using ANSYS Workbench which served as a modelling tool using a drawing imported from Solid-works. Experimental investigation was done using PVDF sensor embedded on the surface of the sample in a cantilever setup and a vertical Vernier scale to measure the deflection due to impact and vibration loading. A Fluke-View oscilloscope was used as a data logger when the measurement of the output voltage and the natural frequency were recorded. The techniques of using FEA and experimental investigation were then compared. The findings of this study showed that the PVDF sensor is suitable for condition monitoring of a UAV wing structure.
206

Ajuste do modelo matemático de uma aeronave com sistema de aumento de estabilidade com base em ensaios em túnel de vento / Adjustment of an aircraft mathematical model with stability augmentation system based on wind tunnel analysis

Wellington da Silva Mattos 03 August 2007 (has links)
O presente trabalho descreve a aplicação de um método de ajuste de modelo, com base em resultados experimentais obtidos em túnel de vento, a uma aeronave com sistema de aumento de estabilidade longitudinal (LSAS). O estudo inclui uma revisão de métodos para ajuste de modelos, o desenvolvimento do modelo matemático da aeronave e uma descrição dos ensaios em túnel de vento da aeronave com o LSAS. O sistema automático de controle é composto de (1) um sistema de aquisição de dados, que processa o sinal do sensor e envia um sinal de comando para o atuador; (2) um potenciômetro, usado como sensor de ângulo de arfagem; e (3) um servo motor, usado como atuador do canard. O modelo de aeronave é baseado no Grumman X-29, que tem asa de enflechamento negativo e canard. Sua margem de estabilidade estática pode ser ajustada mudando a posição do centro de rotação que, por sua vez, coincide com a posição do centro de gravidade da aeronave através de balanceamento do peso. O ajuste do modelo matemático do avião é conduzido, no ambiente Matlab/Simulink, com a modificação dos parâmetros das derivadas de estabilidade da aeronave, do filtro digital e da dinâmica do sensor e do atuador. O objetivo é obter uma correlação ótima entre resultados teóricos e experimentais. O método da análise da sensibilidade paramétrica é escolhido para o ajuste do modelo. Numa primeira fase do estudo, a comparação entre resultados experimentais e numéricos é feita com base nas freqüências e razões de amortecimento da variação do ângulo de arfagem em resposta a uma entrada do tipo impulso de deflexão do canard. Numa segunda fase a comparação é baseada diretamente na resposta no tempo do ângulo de arfagem numérico e experimental para a mesma entrada impulso do canard. Três posições do centro de gravidade são analisadas, uma em que a aeronave é estaticamente estável e duas em que ela é instável. Os resultados mostram grande variação dos parâmetros ajustados indicando a necessidade de aperfeiçoamento na implementação da metodologia utilizada. / The present work describes the application of a model updating method, based on experimental wind tunnel data to an aircraft longitudinal stability augmentation system (LSAS). The study includes a revision of model updating methods, the development of the aircraft mathematical model and the description of a previously conducted, aircraft LSAS wind tunnel testing. The LSAS is comprised by (1) a data acquisition system, which processes the sensor signal and sends the control command to the actuator; (2) a potentiometer, used as a pitch angle sensor; and (3) a servo motor, used to actuate canard deflection. The aircraft model is based on the Grumman X-29, which has canard and forward swept wing. Its static stability margin can be adjusted by changing the center of rotation position which, in turn, coincides with the aircraft center of gravity position through weight balance. The airplane mathematical model updating is carried out, in the Matlab/Simulink environment, by adjusting model parameters for aircraft stability derivatives, digital filter, sensor and servo dynamics. The objective is to obtain an optimal correlation between numerical and experimental results. The parametric sensitivity analysis method is chosen for model updating. In a first phase of the study the comparison between theoretical and experimental results is based on frequencies and damping ratios for aircraft pitch angle response to an impulse canard deflection input. In a second phase the comparison is based directly on experimental and numerical pitch angle time response to the same impulse canard deflection input. Three center of gravity positions are analyzed, one for which the aircraft is statically stable and two for which it is unstable. Results show large variations among adjusted parameters indicating the need for improvements in the implementation of the adopted methodology.
207

Návrh mechanického a elektrického subsystému bezpilotního letounu / Design of UAV hardware - mechanical and electrical subsystem

Kraus, David January 2014 (has links)
Main topic of this thesis is creation of platform for testing stabilization and control algorithms for UAV. For chosen suitable model plane was designed a structure of control and power electronics. Research of suitable algorithms was made and some of them were implemented. For this algorithms gains were designed, using simulation. The whole system was tested and validated in flight.
208

Hierarchical Combined Plant and Control Design for Thermal Management Systems

Austin L Nash (8063924) 03 December 2019 (has links)
Over the last few decades, many factors, including increased electrification, have led to a critical need for fast and efficient transient cooling. Thermal management systems (TMSs) are typically designed using steady-state assumptions and to accommodate the most extreme operating conditions that could be encountered, such as maximum expected heat loads. Unfortunately, by designing systems in this manner, closed-loop transient performance is neglected and often constrained. If not constrained, conventional design approaches result in oversized systems that are less efficient under nominal operation. Therefore, it is imperative that \emph{transient} component modeling and subsystem interactions be considered at the design stage to avoid costly future redesigns. Simply put, as technological advances create the need for rapid transient cooling, a new design paradigm is needed to realize next generation systems to meet these demands. <br><br>In this thesis, I develop a new design approach for TMSs called hierarchical control co-design (HCCD). More specifically, I develop a HCCD algorithm aimed at optimizing high-fidelity design and control for a TMS across a system hierarchy. This is accomplished in part by integrating system level (SL) CCD with detailed component level (CL) design optimization. The lower-fidelity SL CCD algorithm incorporates feedback control into the design of a TMS to ensure controllability and robust transient response to exogenous disturbances, and the higher-fidelity CL design optimization algorithms provide a way of designing detailed components to achieve the desired performance needed at the SL. Key specifications are passed back and forth between levels of the hierarchy at each iteration to converge on an optimal design that is responsive to desired objectives at each level. The resulting HCCD algorithm permits the design and control of a TMS that is not only optimized for steady-state efficiency, but that can be designed for robustness to transient disturbances while achieving said disturbance rejection with minimal compromise to system efficiency. Several case studies are used to demonstrate the utility of the algorithm in designing systems with different objectives. Additionally, high-fidelity thermal modeling software is used to validate a solution to the proposed model-based design process. <br>
209

THE DEVELOPMENT OF A BIOMEMETIC DYNAMIC AIRFOIL CONTROL SYSTEM FOR FLAPPING WING MICRO AIR VEHICLES

Hauerwas, Joel Adam January 2020 (has links)
No description available.
210

Towards Provable Guarantees for Learning-based Control Paradigms

Shanelle Gertrude Clarke (14247233) 12 December 2022 (has links)
<p> Within recent years, there has been a renewed interest in developing data-driven learning based algorithms for solving longstanding challenging control problems. This interest is primarily motivated by the availability of ubiquitous data and an increase in computational resources of modern machines.  However, there is a prevailing concern on the lack of provable performance guarantees on data-driven/model-free learning based control algorithms. This dissertation focuses the following key aspects: i) with what facility can state-of-the-art learning-based control methods eke out successful performance for challenging flight control applications such as aerobatic maneuvering?; and ii) can we leverage well-established tools and techniques in control theory to provide some provable guarantees for different types of learning-based algorithms?  </p> <p>To these ends, a deep RL-based controller is implemented, via high-fidelity simulations, for Fixed-Wing aerobatic maneuvering. which shows the facility with which learning-control methods can eke out successful performances and further encourages the development of learning-based control algorithms with an eye towards providing provable guarantees.<br> </p> <p>Two learning-based algorithms are also developed: i) a model-free algorithm which learns a stabilizing optimal control policy for the bilinear biquadratic regulator (BBR) which solves the regulator problem with a biquadratic performance index given an unknown bilinear system; and ii) a model-free inverse reinforcement learning algorithm, called the Model-Free Stochastic inverse LQR (iLQR) algorithm, which solves a well-posed semidefinite programming optimization problem to obtain unique solutions on the linear control gain and the parameters of the quadratic performance index given zero-mean noisy optimal trajectories generated by a linear time-invariant dynamical system. Theoretical analysis and numerical results are provided to validate the effectiveness of all proposed algorithms.</p>

Page generated in 0.047 seconds