Spelling suggestions: "subject:"floatingpoint arithmetic"" "subject:"floatingzone arithmetic""
11 |
Low-power fused FFT butterfly arithmetic unit with merged multiple-constant multiplierMin, Jae Hong 21 February 2011 (has links)
Fused floating-point arithmetic units such as a floating-point fused Dot-Product (fused DP) and a floating-point fused Add-Subtract (fused AS) are employed for the implementation of the butterfly unit of the FFT due to their characteristics of low power and less area. In addition, the fused DP has less delay and lower error. Among the elements of the fused DP, two internal mantissa multipliers occupy the largest area and consume the largest power. A Multiple-Constant Multiplier (MCM) architecture has high speed, low power consumption, and small area compared to a conventional multiplier. The MCM is used for the internal mantissa multiplier, providing a solution for low power and high performance. Despite the benefits of the MCM, it lacks precision compared to a conventional multiplier. Due to this, the butterfly unit using the MCM has higher error.
In this report, a new architecture of the butterfly unit has been designed by merging conventional MCMs. The new architecture provides two options. It either reduces the error or it lowers the power compared to a conventional MCM butterfly unit. / text
|
12 |
Techniques for FPGA neural modelingWeinstein, Randall Kenneth 21 November 2006 (has links)
Neural simulations and general dynamical system modeling consistently push the limits of available computational horsepower. This is occurring for a number of reasons: 1) models are progressing in complexity as our biological understanding increases, 2) high-level analysis tools including parameter searches and sensitivity analyses are becoming more prevalent, and 3) computational models are increasingly utilized alongside with biological preparations in a dynamic clamp configuration. General-purpose computers, as the primary target for modeling problems, are the simplest platform to implement models due to the rich variety of available tools. However, computers, limited by their generality, perform sub-optimally relative to custom hardware solutions. The goal of this thesis is to develop a new cost-effective and easy-to-use platform delivering orders of magnitude improvement in throughput over personal computers.
We suggest that FPGAs, or field programmable gate arrays, provide an outlet for dramatically enhanced performance. FPGAs are high-speed, reconfigurable devices that can implement any digital logic operation using an array of parallel computing elements. Already common in fields such as signal processing, radar, medical imaging, and consumer electronics, FPGAs have yet to gain traction in neural modeling due to their steep learning curve and lack of sufficient tools despite their high-performance capability. The overall objective of this work has been to overcome the shortfalls of FPGAs to enable adoption of FPGAs within the neural modeling community.
We embarked on an incremental process to develop an FPGA-based modeling environment. We first developed a prototype multi-compartment motoneuron model using a standard digital-design methodology. FPGAs at this point were shown to exceed software simulations by 10x to 100x. Next, we developed canonical modeling methodologies for manual generation of typical neural model topologies. We then developed a series of tools and techniques for analog interfacing, digital protocol processing, and real-time model tuning. This thesis culminates with the development of Dynamo, a fully-automated model compiler for the direct conversion of a model description into an FPGA implementation.
|
13 |
A constraint-based approach to verification of programs with floating-point numbersAcosta Zapién, Carlos Eduardo, January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
14 |
Techniques for FPGA neural modelingWeinstein, Randall Kenneth. January 2006 (has links)
Thesis (Ph.D)--Bioengineering, Georgia Institute of Technology, 2007. / Committee Chair: Lee, Robert; Committee Member: Butera, Robert; Committee Member: DeWeerth, Steve; Committee Member: Madisetti, Vijay; Committee Member: Voit, Eberhard. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
15 |
From Machine Arithmetic to Approximations and back again : Improved SMT Methods for Numeric Data TypesZeljić, Aleksandar January 2017 (has links)
Safety-critical systems, especially those found in avionics and automotive industries, rely on machine arithmetic to perform their tasks: integer arithmetic, fixed-point arithmetic or floating-point arithmetic (FPA). Machine arithmetic exhibits subtle differences in behavior compared to the ideal mathematical arithmetic, due to fixed-size representation in memory. Failure of safety-critical systems is unacceptable, due to high-stakes involving human lives or huge amounts of money, time and effort. By formally proving properties of systems, we can be assured that they meet safety requirements. However, to prove such properties it is necessary to reason about machine arithmetic. SMT techniques for machine arithmetic are lacking scalability. This thesis presents approaches that augment or complement existing SMT techniques for machine arithmetic. In this thesis, we explore approximations as a means of augmenting existing decision procedures. A general approximation refinement framework is presented, along with its implementation called UppSAT. The framework solves a sequence of approximations. Initially very crude, these approximations are fairly easy to solve. Results of solving approximate constraints are used to either reconstruct a solution of original constraints, obtain a proof of unsatisfiability or to refine the approximation. The framework preserves soundness, completeness, and termination of the underlying decision procedure, guaranteeing that eventually, either a solution is found or a proof that solution does not exist. We evaluate the impact of approximations implemented in the UppSAT framework on the state-of-the-art in SMT for floating-point arithmetic. A novel method to reason about the theory of fixed-width bit-vectors called mcBV is presented. It is an instantiation of the model constructing satisfiability calculus, mcSAT, and uses a new lazy representation of bit-vectors that allows both bit- and word-level reasoning. It uses a greedy explanation generalization mechanism capable of more general learning compared to traditional approaches. Evaluation of mcBV shows that it can outperform bit-blasting on several classes of problems.
|
16 |
Contribution to error analysis of algorithms in floating-point arithmetic / Contribution à l'analyse d'algorithmes en arithmétique à virgule flottantePlet, Antoine 07 July 2017 (has links)
L’arithmétique virgule flottante est une approximation de l’arithmétique réelle dans laquelle chaque opération peut introduire une erreur. La norme IEEE 754 requiert que les opérations élémentaires soient aussi précises que possible, mais au cours d’un calcul, les erreurs d’arrondi s’accumulent et peuvent conduire à des résultats totalement faussés. Cela arrive avec une expression aussi simple que ab + cd, pour laquelle l’algorithme naïf retourne parfois un résultat aberrant, avec une erreur relative largement supérieure à 1. Il est donc important d’analyser les algorithmes utilisés pour contrôler l’erreur commise. Je m’intéresse à l’analyse de briques élémentaires du calcul en cherchant des bornes fines sur l’erreur relative. Pour des algorithmes suffisamment précis, en arithmétique de base β et de précision p, on arrive en général à prouver une borne sur l'erreur de la forme α·u + o(u²) où α > 0 et u = 1/2·β1-p est l'unité d'arrondi. Comme indication de la finesse d'une telle borne, on peut fournir des exemples numériques pour les précisions standards qui approchent cette borne, ou bien un exemple paramétré par la précision qui génère une erreur de la forme α·u + o(u²), prouvant ainsi l'optimalité asymptotique de la borne. J’ai travaillé sur la formalisation d’une arithmétique à virgule flottante symbolique, sur des nombres paramétrés par la précision, et à son implantation dans le logiciel de calcul formel Maple. J’ai aussi obtenu une borne d'erreur très fine pour un algorithme d’inversion complexe en arithmétique flottante. Ce résultat suggère le calcul d'une division décrit par la formule x/y = (1/y)·x, par opposition à x/y = (x·y)/|y|². Quel que soit l'algorithme utilisé pour effectuer la multiplication, nous avons une borne d'erreur plus petite pour les algorithmes décrits par la première formule. Ces travaux sont réalisés avec mes directeurs de thèse, en collaboration avec Claude-Pierre Jeannerod (CR Inria dans AriC, au LIP). / Floating-point arithmetic is an approximation of real arithmetic in which each operation may introduce a rounding error. The IEEE 754 standard requires elementary operations to be as accurate as possible. However, through a computation, rounding errors may accumulate and lead to totally wrong results. It happens for example with an expression as simple as ab + cd for which the naive algorithm sometimes returns a result with a relative error larger than 1. Thus, it is important to analyze algorithms in floating-point arithmetic to understand as thoroughly as possible the generated error. In this thesis, we are interested in the analysis of small building blocks of numerical computing, for which we look for sharp error bounds on the relative error. For this kind of building blocks, in base and precision p, we often successfully prove error bounds of the form α·u + o(u²) where α > 0 and u = 1/2·β1-p is the unit roundoff. To characterize the sharpness of such a bound, one can provide numerical examples for the standard precisions that are close to the bound, or examples that are parametrized by the precision and generate an error of the same form α·u + o(u²), thus proving the asymptotic optimality of the bound. However, the paper and pencil checking of such parametrized examples is a tedious and error-prone task. We worked on the formalization of a symbolicfloating-point arithmetic, over numbers that are parametrized by the precision, and implemented it as a library in the Maple computer algebra system. We also worked on the error analysis of the basic operations for complex numbers in floating-point arithmetic. We proved a very sharp error bound for an algorithm for the inversion of a complex number in floating-point arithmetic. This result suggests that the computation of a complex division according to x/y = (1/y)·x may be preferred, instead of the more classical formula x/y = (x·y)/|y|². Indeed, for any complex multiplication algorithm, the error bound is smaller with the algorithms described by the “inverse and multiply” approach.This is a joint work with my PhD advisors, with the collaboration of Claude-Pierre Jeannerod (CR Inria in AriC, at LIP).
|
17 |
Improved architectures for fused floating-point arithmetic unitsSohn, Jongwook 05 November 2013 (has links)
Most general purpose processors (GPP) and application specific processors (ASP) use the floating-point arithmetic due to its wide and precise number system. However, the floating-point operations require complex processes such as alignment, normalization and rounding. To reduce the overhead, fused floating-point arithmetic units are introduced. In this dissertation, improved architectures for three fused floating-point arithmetic units are proposed: 1) Fused floating-point add-subtract unit, 2) Fused floating-point two-term dot product unit, and 3) Fused floating-point three-term adder. Also, the three fused floating-point units are implemented for both single and double precision and evaluated in terms of the area, power consumption, latency and throughput. To improve the performance of the fused floating-point add-subtract unit, a new alignment scheme, fast rounding, two dual-path algorithms and pipelining are applied. The improved fused floating-point two-term dot product unit applies several optimizations: a new alignment scheme, early normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path algorithm and pipelining. The proposed fused floating-point three-term adder applies a new exponent compare and significand alignment scheme, double reduction, early normalization and fast rounding, three-input LZA and pipelining to improve the performance. / text
|
18 |
Complexity issues in counting, polynomial evaluation and zero findingBriquel, Irénée 29 November 2011 (has links) (PDF)
In the present thesis, we try to compare the classical boolean complexity with the algebraic complexity, by studying problems related to polynomials. We consider the algebraic models from Valiant and from Blum, Shub and Smale (BSS). To study the algebraic complexity classes, one can start from results and open questions from the boolean case, and look at their translation in the algebraic context. The comparison of the results obtained in the two settings will then boost our understanding of both complexity theories. The first part follows this framework. By considering a polynomial canonically associated to a boolean formula, we get a link between boolean complexity issues on the formula and algebraic complexity problems on the polynomial. We studied the complexity of computing the polynomial in Valiant's model, as a function of the complexity of the boolean formula. We found algebraic counterparts to some boolean results. Along the way, we could also use some algebraic methods to improve boolean results, in particular by getting better counting reductions. Another motivation for algebraic models of computation is to offer an elegant framework to the study of numerical algorithms. The second part of this thesis follows this approach. We started from new algorithms for the search of approximate zeros of complex systems of n polynomials in n variables. Up to now, those were BSS machine algorithms. We studied the implementation of these algorithms on digital computers, and propose an algorithm using floating arithmetic for this problem.
|
19 |
Methods to evaluate accuracy-energy trade-off in operator-level approximate computing / Méthodes d'évaluation du compromis précision-énergie pour le calcul approximatif niveau opérateurBarrois, Benjamin 11 December 2017 (has links)
Les limites physiques des circuits à base de silicium étant en passe d'être atteintes, de nouveaux moyens doivent être trouvés pour outrepasser la fin de la loi de Moore. Beaucoup d'applications peuvent tolérer des approximations dans leurs calculs à différents niveaux, sans dégrader la qualité de leur sortie, ou en la dégradant de manière acceptable. Cette thèse se concentre sur les architectures arithmétiques approximatives afin de saisir cette opportunité. Tout d'abord, une étude critique de l'état de l'art des additionneurs et multiplieurs approximatifs est présentée. Ensuite, un modèle de propagation d'erreur virgule-fixe mettant en œuvre la densité spectrale de puissance est proposée, suivi d'un modèle de propagation du taux d'erreur binaire positionnel des opérateurs approximatifs. Les opérateurs approximatifs sont ensuite utilisés pour la reproduction des effets de la VOS dans les opérateurs arithmétiques exacts. Grâce à notre outil de travail open-source ApxPerf et ses bibliothèques synthétisables C++ apx_fixed pour les opérateurs approximatifs et ct_float pour l'arithmétique flottante basse consommation, deux études consécutives sont proposées, basées sur des applications de traitement du signal complexes. Tout d'abord, les opérateurs approximatifs sont comparés à l'arithmétique virgule-fixe, et la supériorité de la virgule-fixe est soulignée. Enfin, la virgule fixe est comparée aux petits flottants dans des conditions équivalentes. En fonction des conditions applicatives, la virgule-flottante montre une compétitivité inattendue face à la virgule-fixe. Les résultats et discussions de cette thèse donnent un regard nouveau sur l'arithmétique approximative et suggère de nouvelles directions pour le futur des architectures efficaces en énergie. / The physical limits being reached in silicon-based computing, new ways have to be found to overcome the predicted end of Moore's law. Many applications can tolerate approximations in their computations at several levels without degrading the quality of their output, or degrading it in an acceptable way. This thesis focuses on approximate arithmetic architectures to seize this opportunity. Firstly, a critical study of state-of-the-art approximate adders and multipliers is presented. Then, a model for fixed-point error propagation leveraging power spectral density is proposed, followed by a model for bitwise-error rate propagation of approximate operators. Approximate operators are then used for the reproduction of voltage over-scaling effects in exact arithmetic operators. Leveraging our open-source framework ApxPerf and its synthesizable template-based C++ libraries apx_fixed for approximate operators, and ct_float for low-power floating-point arithmetic, two consecutive studies are proposed leveraging complex signal processing applications. Firstly, approximate operators are compared to fixed-point arithmetic, and the superiority of fixed-point is highlighted. Secondly, fixed-point is compared to small-width floating-point in equivalent conditions. Depending on the applicative conditions, floating-point shows an unexpected competitiveness compared to fixed-point. The results and discussions of this thesis give a fresh look on approximate arithmetic and suggest new directions for the future of energy-efficient architectures.
|
20 |
Improving the Numerical Accuracy of Floating-Point Programs with Automatic Code Transformation Methods / Amélioration de la précision numérique de programmes basés sur l'arithmétique flottante par les méthodes de transformation automatiqueDamouche, Nasrine 12 December 2016 (has links)
Les systèmes critiques basés sur l’arithmétique flottante exigent un processus rigoureux de vérification et de validation pour augmenter notre confiance en leur sureté et leur fiabilité. Malheureusement, les techniques existentes fournissent souvent une surestimation d’erreurs d’arrondi. Nous citons Arian 5 et le missile Patriot comme fameux exemples de désastres causés par les erreurs de calculs. Ces dernières années, plusieurs techniques concernant la transformation d’expressions arithmétiques pour améliorer la précision numérique ont été proposées. Dans ce travail, nous allons une étape plus loin en transformant automatiquement non seulement des expressions arithmétiques mais des programmes complets contenant des affectations, des structures de contrôle et des fonctions. Nous définissons un ensemble de règles de transformation permettant la génération, sous certaines conditions et en un temps polynômial, des expressions pluslarges en appliquant des calculs formels limités, au sein de plusieurs itérations d’une boucle. Par la suite, ces larges expressions sont re-parenthésées pour trouver la meilleure expression améliorant ainsi la précision numérique des calculs de programmes. Notre approche se base sur les techniques d’analyse statique par interprétation abstraite pour sur-rapprocher les erreurs d’arrondi dans les programmes et au moment de la transformation des expressions. Cette approche est implémenté dans notre outil et des résultats expérimentaux sur des algorithmes numériques classiques et des programmes venant du monde d’embarqués sont présentés. / Critical software based on floating-point arithmetic requires rigorous verification and validation process to improve our confidence in their reliability and their safety. Unfortunately available techniques for this task often provide overestimates of the round-off errors. We can cite Arian 5, Patriot rocket as well-known examples of disasters. These last years, several techniques have been proposed concerning the transformation of arithmetic expressions in order to improve their numerical accuracy and, in this work, we go one step further by automatically transforming larger pieces of code containing assignments, control structures and functions. We define a set of transformation rules allowing the generation, under certain conditions and in polynomial time, of larger expressions by performing limited formal computations, possibly among several iterations of a loop. These larger expressions are better suited to improve, by re-parsing, the numerical accuracy of the program results. We use abstract interpretation based static analysis techniques to over-approximate the round-off errors in programs and during the transformation of expressions. A tool has been implemented and experimental results are presented concerning classical numerical algorithms and algorithms for embedded systems.
|
Page generated in 0.0858 seconds