• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Quantum dynamics and laser control for photochemistry / Dynamique quantique et contrôle par laser pour la photochimie

Sala, Matthieu 08 April 2015 (has links)
Cette thèse porte sur la description théorique de processus dynamiques ultra-rapides de molécules polyatomiques et de leur contrôle par impulsions laser. Nous avons d’abord étudié la photochimie de l’aniline à l’aide de calculs de structure électronique. Nous avons d´écrit plusieurs régions clé des surfaces d’énergie potentielle et analysé ces résultats en relation avec les données expérimentales existantes. La photochimie de la pyrazine a été étudiée par des calculs de dynamiques quantique basés sur un Hamiltonien modèle incluant les quatre états électroniques excités de plus basse énergie et seize modes de vibration. Nous montrons que l’état sombre Au(nπ∗) joue un rôle important dans la dynamique de la molécule après photo-excitation. Un modèle simplifié à deux états et quatre modes a été utilisé pour étudier le contrôle par laser de la dynamique de la pyrazine photo-excitée. Nous proposons un mécanisme visant à augmenter la durée de vie de l’état B2u(ππ∗) en utilisant l’effet Stark induit par une impulsion laser intense non-résonante. / The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and of their control by laser pulses. We first use electronic structure calculations to study the photochemistry of aniline. A umber of previously unknown features of the potential energy surfaces of the low-lying elec-tronic states are reported, and analyzed in relation with the experimental results available. We use quantum dynamics simulations, based on a model Hamiltonian including the four lowest excited electronic states and sixteen vibrational modes, to investigate the photochem-istry of pyrazine. We show that the dark Au(nπ∗) state plays an important role in the ultrafast dynamics of the molecule after photoexcitation. The laser control of the excited state dynamics of pyrazine is studied using a simplified two-state four-mode model Hamiltonian. We propose a control mechanism to enhance the lifetime of the bright B2u(ππ∗) state using the Stark effect induced by a strong non-resonant laser pulse. We finally focus on the laser control of the tunneling dynamics of the NHD2 molecule, using accurate full-dimensional potential energy and dipole moment surfaces. We use simple effective Hamiltonians to explore the effect of the laser parameters on the dynamics and design suitable laser fields to achieve the control. These laser fields are then used in MCTDH quantum dynamics simulations. Both enhancement and suppression of tunneling are achieved in our model.
32

Advanced nonlinear stability analysis of boiling water nuclear reactors

Lange, Carsten 25 September 2009 (has links)
This thesis is concerned with nonlinear analyses of BWR stability behaviour, contributing to a deeper understanding in this field. Despite negative feedback-coefficients of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So far, a comprehensive and an in-depth understanding of the nonlinear BWR stability behaviour are missing, even though the impact of the significant physical parameters is well known. In particular, this concerns parameter regions in which linear stability indicators, like the asymptotic decay ratio, lose their meaning. Nonlinear stability analyses are usually carried out using integral (system) codes, describing the dynamical system by a system of nonlinear partial differential equations (PDE). One aspect of nonlinear BWR stability analyses is to get an overview about different types of nonlinear stability behaviour and to examine the conditions of their occurrence. For these studies the application of system codes alone is inappropriate. Hence, in the context of this thesis, a novel approach to nonlinear BWR stability analyses, called RAM-ROM method, is developed. In the framework of this approach, system codes and reduced order models (ROM) are used as complementary tools to examine the stability characteristics of fixed points and periodic solutions of the system of nonlinear differential equations, describing the stability behaviour of a BWR loop. The main advantage of a ROM, which is a system of ordinary differential equations (ODE), is the possible coupling with specific methods of the nonlinear dynamics. This method reveals nonlinear phenomena in certain regions of system parameters without the need for solving the system of ROM equations. The stability properties of limit cycles generated in Hopf bifurcation points and the conditions of their occurrence are of particular interest. Finally, the nonlinear phenomena predicted by the ROM will be analysed in more details by the system code. Hence, the thesis is not focused on rendering more precisely linear stability indicators like DR. The objective of the ROM development is to develop a model as simple as possible from the mathematical and numerical point of view, while preserving the physics of the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs describing the dynamics of a BWR. The system of ODEs includes all spatial effects in an approximated (spatial averaged) manner, e.g. the space-time dependent neutron flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes. In order to simulate the stability characteristics of the in-phase and out-of-phase oscillation mode, it is only necessary to take into account the fundamental mode and the first azimuthal mode. The ROM, originally developed at PSI in collaboration with the University of Illinois (PSI-Illinois-ROM), was upgraded in significant points: • Development and implementation of a new calculation methodology for the mode feedback reactivity coefficients (void and fuel temperature reactivity) • Development and implementation of a recirculation loop model; analysis and discussion of its impact on the in-phase and out-of-phase oscillation mode • Development of a novel physically justified approach for the calculation of the ROM input data • Discussion of the necessity of consideration of the effect of subcooled boiling in an approximate manner With the upgraded ROM, nonlinear BWR stability analyses are performed for three OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for NPP Brunsbüttel (cycle16) for which measuring data of stability tests are available. In this thesis, the novel approach to nonlinear BWR stability analyses is extensively presented for NPP Leibstadt. In particular, the nonlinear analysis is carried out for an operational point (OP), in which an out-of-phase power oscillation has been observed in the scope of a stability test at the beginning of cycle 7 (KKLc7_rec4). The ROM predicts a saddle-node bifurcation of cycles, occurring in the linear stable region, close to the KKLc7_rec4-OP. This result allows a new interpretation of the stability behaviour around the KKLc7_rec4-OP. The results of this thesis confirm that the RAM-ROM methodology is qualified for nonlinear BWR stability analyses. / Die vorliegende Dissertation leistet einen Beitrag zum tieferen Verständnis des nichtlinearen Stabilitätsverhaltens von Siedewasserreaktoren (SWR). Trotz der Tatsache, dass in diesem technischen System nur negative innere Rückkopplungskoeffizienten auftreten, können in bestimmten Arbeitspunkten oszillatorische Instabilitäten auftreten. Obwohl relativ gute Kenntnisse über die signifikanten physikalischen Einflussgrößen vorliegen, fehlt bisher ein umfassendes Verständnis des SWR-Stabilitätsverhaltens. Das betrifft insbesondere die Bereiche der Systemparameter, in denen lineare Stabilitätsindikatoren, wie zum Beispiel das asymptotische Decay Ratio (DR), ihren Sinn verlieren. Die nichtlineare Stabilitätsanalyse wird im Allgemeinen mit Systemcodes (nichtlineare partielle Differentialgleichungen, PDG) durchgeführt. Jedoch kann mit Systemcodes kein oder nur ein sehr lückenhafter Überblick über die Typen von nichtlinearen Phänomenen, die in bestimmten System-Parameterbereichen auftreten, erhalten werden. Deshalb wurde im Rahmen der vorliegenden Arbeit eine neuartige Methode (RAM-ROM Methode) zur nichtlinearen SWR-Stabilitätsanalyse erprobt, bei der integrale Systemcodes und sog. vereinfachte SWR-Modelle (ROM) als sich gegenseitig ergänzende Methoden eingesetzt werden, um die Stabilitätseigenschaften von Fixpunkten und periodischen Lösungen (Grenzzyklen) des nichtlinearen Differentialgleichungssystems, welches das Stabilitätsverhalten des SWR beschreibt, zu bestimmen. Das ROM, in denen das dynamische System durch gewöhnliche Differentialgleichungen (GDG) beschrieben wird, kann relativ einfach mit leistungsfähigen Methoden aus der nichtlinearen Dynamik, wie zum Beispiel die semianalytische Bifurkationsanalyse, gekoppelt werden. Mit solchen Verfahren kann, ohne das DG-System explizit lösen zu müssen, ein Überblick über mögliche Typen von stabilen und instabilen oszillatorischen Verhalten des SWR erhalten werden. Insbesondere sind die Stabilitätseigenschaften von Grenzzyklen, die in Hopf-Bifurkationspunkten entstehen, und die Bedingungen, unter denen sie auftreten, von Interesse. Mit dem Systemcode (RAMONA5) werden dann die mit dem ROM vorhergesagten Phänomene in den entsprechenden Parameterbereichen detaillierter untersucht (Validierung des ROM). Die Methodik dient daher nicht der Verfeinerung der Berechnung linearer Stabilitätsindikatoren (wie das DR). Das ROM-Gleichungssystem entsteht aus den PDGs des Systemcodes durch geeignete (nichttriviale) räumliche Mittelung der PDG. Es wird davon ausgegangen, dass die Reduzierung der räumlichen Komplexität die Stabilitätseigenschaften des SWR nicht signifikant verfälschen, da durch geeignete Mittlungsverfahren, räumliche Effekte näherungsweise in den GDGs berücksichtig werden. Beispielsweise wird die raum- und zeitabhängige Neutronenflussdichte nach räumlichen Moden entwickelt, wobei für eine Simulation der Stabilitätseigenschaften der In-phase- und Out-of-Phase-Leistungsoszillationen nur der Fundamentalmode und der erste azimuthale Mode berücksichtigt werden muss. Das ROM, welches ursprünglich am Paul Scherrer Institut (PSI, Schweiz) in Zusammenarbeit mit der Universität Illinois (USA) entwickelt wurde, ist in zwei wesentlichen Punkten erweitert und verbessert worden: • Entwicklung und Implementierung einer neuen Methode zur Berechnung der Rückkopplungsreaktivitäten • Entwicklung und Implementierung eines Modells zur Beschreibung der Rezirkulationsschleife (insbesondere wurde der Einfluss der Rezirkulationsschleife auf den In-Phase-Oszillationszustand und auf den Out-of-Phase-Oszillationszustand untersucht) • Entwicklung einer physikalisch begründeten Methode zur Berechnung der ROM-Inputdaten • Abschätzung des Einflusses des unterkühlten Siedens im Rahmen der ROM-Näherungen Mit dem erweiterten ROM wurden nichtlineare Stabilitätsanalysen für drei Arbeitspunkte (KKW Leibstadt (Zyklus 7) KKW Ringhals (Zyklus 14) und KKW Brunsbüttel (Zyklus 16)), für die Messdaten vorliegen, durchgeführt. In der Dissertationsschrift wird die RAM-ROM Methode ausführlich am Beispiel eines Arbeitspunktes (OP) des KKW Leibstadt (KKLc7_rec4-OP), in dem eine aufklingende regionale Leistungsoszillation bei einem Stabilitätstest gemessen worden ist, demonstriert. Das ROM sagt die Existenz eines Umkehrpunktes (saddle-node bifurcation of cycles, fold-bifurcation) voraus, der sich im linear stabilen Gebiet nahe der Stabilitätsgrenze befindet. Mit diesem ROM-Ergebnis ist eine neue Interpretation der Stabilitätseigenschaften des KKLc7_rec4-OP möglich. Die Resultate der in der Dissertation durchgeführten RAM-ROM Analyse bestätigen, dass das weiterentwickelte ROM für die Analyse des Stabilitätsverhaltens realer Leistungsreaktoren qualifiziert wurde.
33

Frequency domain methods for the analysis of time delay systems

Otto, Andreas 06 July 2016 (has links)
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method. The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions. In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling.:1. Introduction 2. System definition and equivalent systems 3. Analysis of nonlinear time delay systems 4. Analytical solution of linear time delay systems 5. Frequency domain approach 6. Hill-Floquet method 7. Applications 8. Concluding remarks A Appendix / In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können. Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird. Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden.:1. Introduction 2. System definition and equivalent systems 3. Analysis of nonlinear time delay systems 4. Analytical solution of linear time delay systems 5. Frequency domain approach 6. Hill-Floquet method 7. Applications 8. Concluding remarks A Appendix

Page generated in 0.0582 seconds