• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude des fontaines turbulentes / Turbulent miscible fountains

Mehaddi, Rabah 14 November 2014 (has links)
Une fontaine peut se créer quand la flottabilité d'un rejet vertical s'oppose à sa quantité de mouvement. Ce type d'écoulement connaît beaucoup d'applications que ce soit dans la nature (panaches issus des éruptions volcaniques) ainsi que dans l'industrie du bâtiment (chauffage et refroidissement) ou dans le domaine des risques (rejets accidentel de gaz lourd). Dans cette thèse, nous nous focalisons sur l'étude des fontaines turbulentes miscibles. Dans le premier chapitre nous reformulons le modèle théorique de Morton et al. (1956) pour traiter le cas des fontaines en milieu linéairement stratifié. La résolution de ce modèle permet d'obtenir des relations analytiques pour la hauteur de la fontaine et sa hauteur d'étalement. Ce modèle est, par la suite, étendu au cas des panaches et des jets turbulents en milieu linéairement stratifié. Dans le second chapitre, nous proposons un modèle théorique permettant d'étudier une fontaine turbulente miscible en régime établi. Pour calibrer ce modèle, des simulations numériques aux grandes échelles (LES) sont utilisées pour obtenir une estimation des valeurs des constantes associées aux phénomènes d'échanges turbulents entre les parties ascendante et descendante de la fontaine. L'objectif du dernier chapitre est d'apporter, à partir d'expérimentations en laboratoire, des informations quantitatives sur l'influence de forts écarts de masses volumiques dans les écoulements de type fontaine. Les expériences sont réalisées pour des fontaines gazeuses (mélange air/hélium) en régime établi. / A fountain can occur when the buoyancy of a vertically released fluid opposes its momentum. Such flows have many applications in nature (plumes issuing from volcanic eruption), building industry (cooling or heating) or in the area of risk management (accidental release of heavy dangerous gas). In this thesis, we focus on the study of miscible turbulent fountains. In the first chapter, we revisit the theoretical model of Morton et al. (1956) to handle the case of fountains in linearly stratified fluid. The resolution of this model allows us to obtain analytical relations for the fountain height as well as the spreading height of its horizontal layer. This model is subsequently extended to the case of turbulent jets and plumes in linearly stratified fluid. In the second chapter, we propose a theoretical model for the study of a turbulent miscible fountain in a steady state. To calibrate this model, large eddy simulations (LES) are used to obtain an estimate of the values of the constants associated with the additional terms appearing in the equations. The objective of the final chapter is to provide, from laboratory experiments, quantitative information on the influence of strong density differences on the behaviour of a turbulent fountain. These experiments shows that all the classical relations valid for the Boussinesq case can be extended to the non-Boussinesq case by using an appropriate definition of the Froude number.
2

Buoyant miscible injection flows in an inclined closed-end pipe

Akbari, Soheil 11 April 2024 (has links)
Thèse ou mémoire avec insertion d’articles / Les puits de pétrole et de gaz ont leur propre cycle de vie: le forage, la production, et finalement le bouchage et l'abandon (P&A) des puits. Les opérations de P&A impliquent généralement la mise en place d'un bouchon de ciment dans des sections spécifiques du puits de forage, afin de fournir des isolations zonales et de prévenir toute fuite. L'une des techniques courantes de mise en place d'un bouchon de ciment est la méthode du dump bailing, dans laquelle un coulis de ciment est injecté via un conteneur excentrique dans le puits de forage rempli d'un fluide in situ. Le processus est affecté par divers paramètres d'écoulement, tels que la différence de densité (flottabilité), le taux d'injection, les considérations géométriques, l'angle d'inclinaison, le rapport de viscosité et la contrainte d'écoulement. Motivée par cette application industrielle, cette thèse de doctorat étudie l'écoulement par injection miscible flottante d'un fluide lourd (dense) dans une conduite inclinée à extrémité fermée remplie d'un fluide léger (moins dense). Pour ce faire, des expériences accompagnées de méthodes semi-analytiques et informatiques complémentaires sont utilisées pour analyser les effets des paramètres susmentionnés sur la dynamique de l'écoulement. Pour généraliser nos résultats, nous les présentons en utilisant les nombres adimensionnels pertinents de l'écoulement, y compris le nombre de Reynolds (Re) qui représente les contraintes inertielles par rapport aux contraintes visqueuses, le nombre de Froude (Fr) qui montre le rapport des forces d'inertie aux forces de flottabilité, le nombre d'Archimède (Ar) et le nombre de flottabilité (χ) qui sont tous deux le rapport des contraintes de flottabilité aux contraintes visqueuses, le nombre de Bingham (B) qui représente la limite d'élasticité par rapport aux contraintes visqueuses, le rapport de viscosité (M), l'angle d'inclinaison (β), le rapport de rayon (Rc) qui est le rapport du rayon intérieur du tube intérieur au rayon intérieur du tube extérieur, le rapport d'aspect (δ) qui représente le rapport de la hauteur de dégagement au rayon intérieur du tube extérieur, et l'excentricité (E). Pour les flux d'injection miscibles flottants iso-visqueux, on observe quatre étapes distinctes au cours du développement du flux: le jet initial, la région de mélange, la région d'affaissement et le front de fluide lourd atteignant l'extrémité de la conduite et retournant vers la région de mélange. Les caractéristiques de l'écoulement sont quantifiées pour chaque phase d'écoulement, sur la base de Re, Ar, Fr et β. Cette étude est ensuite étendue aux effets des rapports de viscosité faibles à modérés (0.04 ≤ M ≤1), à divers rapports d'aspect (δ) et à la dynamique de l'écoulement dans la région annulaire entre la conduite d'injection (intérieure) et la conduite extérieure. On constate que le placement de fluide le plus efficace se produit lorsque δ est petit. En outre, la diminution de M améliore l'élimination du fluide in situ, en augmentant la vitesse du front du fluide lourd dans la section circulaire du domaine d'écoulement. Les résultats des flux d'injection de contrastes de viscosité élevés (0.0025 ≤ M ≤ 0.10) montrent qu'une séparation du front du fluide lourd se produit lorsque M est petit, Re est grand, et β ≫ 30, ce qui conduit à classer les flux en régimes de séparation et de non-séparation, dans un plan de groupe adimensionnel basé sur une combinaison de Ar, β, Re, et M. Pour l'injection miscible flottante d'un fluide à forte limite d'élasticité dans un fluide newtonien léger, des expériences complémentaires et une modélisation semi-analytique ont permis d'identifier trois régimes d'écoulement distincts, à savoir les régimes de rupture, d'enroulement et de flambage (bulging). Dans cette étude, un modèle d'approximation de la lubrification est développé en utilisant l'équation constitutive de Herschel-Bulkley. Sur la base d'une prédiction raisonnable du début de la cédulation, les régimes d'écoulement sont classés par rapport à une combinaison élégante des paramètres d'écoulement sans dimension, y compris B, χ, M, et δ. Un bon accord est obtenu entre la carte des régimes d'écoulement fournie par le modèle et les expériences. Le modèle permet d'étudier les variations de la limite de transition du régime en fonction du rapport des rayons (Rc) et de l'excentricité (E). Les trois principaux régimes d'écoulement observés sont étudiés plus en détail à l'aide de techniques d'imagerie par caméra à grande vitesse, de fluorescence induite par laser et de vélocimétrie Doppler à ultrasons. En conséquence, les caractéristiques détaillées de l'écoulement et les sous-régimes à plus long terme sont analysés. En particulier, le régime de rupture est étudié en termes de processus de cédulation, d'encolure et de pincement, de longueur des filaments et de leurs comportements de chute ultérieurs. Le régime d'enroulement est évalué en termes de comportements d'enroulement régulier, libre et irrégulier. Enfin, le régime de flambage (bulging) est analysé en termes d'apparition d'une partie tombante détachée et de profondeur de pénétration maximale. / Oil and gas wells have their own life cycle: drilling, production, and eventually plug and abandonment (P&A) of the wells. P&A operations usually involve the placement of a cement plug in specified sections of the wellbore, to provide zonal isolations and prevent any leakages. One of the common cement plug placement techniques is the dump bailing method, in which cement slurry is injected via an eccentric container into the wellbore filled with an in-situ fluid. The process is affected by various flow parameters, such as the density difference (buoyancy), the injection rate, the geometrical considerations, the inclination angle, the viscosity ratio, and the yield stress. Motivated by this industrial application, in this Ph.D. thesis, buoyant miscible injection flow of a heavy (dense) fluid into an inclined closed-end pipe filled with a light (less dense) fluid is studied. To do so, experiments accompanied by complementary semi-analytical and computational methods are used to analyze the effects of the aforementioned parameters on the flow dynamics. To generalize our results, we present them using the relevant dimensionless numbers of the flow, including the Reynolds number (Re) which represents the inertial stresses to the viscous stresses, the Froude number (Fr) which shows the ratio of the inertial forces to the buoyant forces, the Archimedes number (Ar) and the buoyancy number (χ) which both are the ratio of the buoyant stresses to the viscous stresses, the Bingham number (B) which represents the yield stress to viscous stresses, the viscosity ratio (M), the inclination angle (β), the radius ratio (R[subscript c]) which is the ratio of the inner radius of the inner pipe to the inner radius of the outer pipe, the aspect ratio (δ) which represents the ratio of the releasing height to the inner radius of the outer pipe, and the eccentricity (E). For iso-viscous buoyant miscible injection flows, four distinct flow stages during the flow development are observed: the initial jet, the mixing region, the slumping region, and the heavy fluid front reaching the pipe end and returning toward the mixing region. The flow features are quantified for each flow stage, based on Re, Ar, Fr and β. Then, this study is extended by considering the effects of low-to-moderate viscosity ratios (0.04 ≤ M ≤1), various aspect ratios (δ), and taking into account the flow dynamics in the annular region between the injection (inner) pipe and the outer pipe. It is found that the most efficient fluid placement occurs when δ is small. Also, decreasing M enhances the removal of the in-situ fluid, via increasing the heavy fluid front velocity in the circular section of the flow domain. The results of high viscosity contrasts (0.0025 ≤ M ≤ 0.10) injection flows show that a heavy fuid front separation occurs when M is small, Re is large, and β ≫ 30, leading to classify the flows into separation and non-separation regimes, in a dimensionless group plane based on a combination of Ar, β, Re, and M. For the buoyant miscible injection of a heavy yield stress fluid into a light Newtonian fluid, using complementary experiments and semi-analytical modelling, three distinct flow regimes, namely, the breakup, coiling, and buckling (bulging) regimes are identified. In this study, a lubrication approximation model is developed using the Herschel-Bulkley constitutive equation. Based on a reasonable prediction to the yielding onset, the flow regimes are classified versus an elegant combination of the dimensionless flow parameters, including B, χ, M, and δ. A good agreement is achieved between the flow regime map provided by the model and experiments. Using the model, the regime transition boundary variations versus the radius ratio (R[subscript c]) and the eccentricity (E) are investigated. The three main observed flow regimes are further investigated based on high-speed camera imaging, laser-induced fluorescence, and ultrasound Doppler velocimetry techniques. Accordingly, detailed flow features and sub-regimes at longer times are analyzed. In particular, the breakup regime is studied in terms of the yielding, necking and pinch-off process, the length of filaments, and their subsequent falling behaviours. The coiling regime is evaluated in terms of the regular, free and irregular coiling behaviours. Finally, the buckling (bulging) regime is analyzed in terms of the appearance of a detached falling part and the maximum penetration depth.
3

Un nouveau modèle SPH incompressible : vers l’application à des cas industriels / A new incompressible SPH model : towards industrial applications

Leroy, Agnes 17 November 2014 (has links)
Cette thèse a pour objet le développement d'un modèle numérique de simulation des fluides fondé sur la méthode Smoothed Particle Hydrodynamics (SPH). SPH est une méthode de simulation numérique sans maillage présentant un certain nombre d'avantages par rapport aux méthodes Eulériennes. Elle permet notamment de modéliser des écoulements à surface libre ou interfaces fortement déformées. Ce travail s'adresse principalement à quatre problématiques liées aux fondements de la méthode SPH : l'imposition des conditions aux limites, la prédiction précise des champs de pression, l'implémentation d'un modèle thermique et la réduction des temps de calcul. L'objectif est de modéliser des écoulements industriels complexes par la méthode SPH, en complément de ce qui peut se faire avec des méthodes à maillage. Typiquement, les problèmes visés sont des écoulements 3-D à surface libre ou confinés, pouvant interagir avec des structures mobiles et/ou transporter des scalaires, notamment des scalaires actifs (e.g. température). Dans ce but, on propose ici un modèle SPH incompressible (ISPH) basé sur une représentation semi-analytique des conditions aux limites. La technique des conditions aux limites semi-analytiques permet d'imposer des conditions sur la pression de manière précise et physique, contrairement à ce qui se fait avec des conditions aux limites classiques en SPH. Un modèle k-epsilon a été incorporé à ce nouveau modèle ISPH, à partir des travaux de Ferrand et al. (2013). Un modèle de flottabilité a également été ajouté, reposant sur l'approximation de Boussinesq. Les interactions entre flottabilité et turbulence sont prises en compte. Enfin, une formulation pour les frontières ouvertes dans le nouveau modèle est établie. La validation du modèle en 2-D a été réalisée sur un ensemble de cas-tests permettant d'estimer les capacités de prédiction du nouveau modèle en ce qui concerne les écoulements isothermes et non-isothermes, laminaires ou turbulents. Des cas confinés sont présentés, ainsi que des écoulements à surface libre (l'un d'eux incluant un corps solide mobile dans l'écoulement). La formulation pour les frontières ouvertes a été testée sur un canal de Poiseuille plan laminaire et sur deux cas de propagation d'une onde solitaire. Des comparaisons sont présentées avec des méthodes à maillage, ainsi qu'avec un modèle SPH quasi-incompressible (WCSPH) avec le même type de conditions aux limites. Les résultats montrent que le modèle permet de représenter des écoulements dans des domaines à géométrie complexe, tout en améliorant la prédiction des champs de pression par rapport à la méthode WCSPH. L'extension du modèle en trois dimensions a été réalisée dans un code massivement parallèle fonctionnant sur carte graphique (GPU). Deux cas de validation en 3-D sont proposés, ainsi que des résultats sur un cas simple d'application en 3-D / In this work a numerical model for fluid flow simulation was developed, based on the Smoothed Particle Hydrodynamics (SPH) method. SPH is a meshless Lagrangian Computational Fluid Dynamics (CFD) method that offers some advantages compared to mesh-based Eulerian methods. In particular, it is able to model flows presenting highly distorted free-surfaces or interfaces. This work tackles four issues concerning the SPH method : the imposition of boundary conditions, the accuracy of the pressure prediction, the modelling of buoyancy effects and the reduction of computational time. The aim is to model complex industrial flows with the SPH method, as a complement of what can be done with mesh-based methods. Typically, the targetted problems are 3-D free-surface or confined flows that may interact with moving solids and/or transport scalars, in particular active scalars (e.g. the temperature). To achieve this goal, a new incompressible SPH (ISPH) model is proposed, based on semi-analytical boundary conditions. This technique for the representation of boundary conditions in SPH makes it possible to accurately prescribe consistent pressure boundary conditions, contrary to what is done with classical boundary conditions in SPH. A k-epsilon turbulence closure is included in the new ISPH model. A buoyancy model was also added, based on the Boussinesq approximation. The interactions between buoyancy and turbulence are modelled. Finally, a formulation for open boundary conditions is proposed in this framework. The 2-D validation was performed on a set of test-cases that made it possible to assess the prediction capabilities of the new model regarding isothermal and non-isothermal flows, in laminar or turbulent regime. Confined cases are presented, as well as free-surface flows (one of them including a moving body in the flow). The open boundary formulation was tested on a laminar plane Poiseuille flow and on two cases of propagation of a solitary wave. Comparisons with mesh-based methods are provided with, as well as comparisons with a weakly-compressible SPH (WCSPH) model using the same kind of boundary conditions. The results show that the model is able to represent flows in complex boundary geometries, while improving the pressure prediction compared to the WCSPH method. The extension of the model to 3-D was done in a massively parallel code running on a Graphic Processing Unit (GPU). Two validation cases in 3-D are presented, as well as preliminary results on a simple 3-D application case
4

Contribution à l'étude des interactions fluide-structure pour l'analyse de l'impact hydrodynamique d'un système de flottabilité d'hélicoptère

Malleron, Nicolas 07 April 2009 (has links) (PDF)
Les travaux réalisés au cours de cette thèse portent sur l'étude du phénomène d'impact hydrodynamique et sa modélisation. Une revue bibliographique des modèles pouvant être utilisés pour rendre compte de ce phénomène est proposée. Un modèle, dit modèle de Wagner généralisé, est ensuite développé. Proposé originellement par Zhao et Faltinsen en 1996 pour traiter de l'impact de formes 2D symétriques, il est ici étendu à des formes asymétriques et analysé de manière approfondie. Ce modèle est ensuite utilisé dans une approche couplée, pour rendre compte du comportement élastique de structures simples, se déformant au cours de l'impact. Enfin, les résultats de deux campagnes expérimentales sont présentés. La première campagne porte sur l'étude de l'impact d'une sphère élastique de taille réduite. La seconde traite de l'impact sur l'eau d'un système de flottabilité réel d'hélicoptère. Dans les deux cas, des modèles numériques sont utilisés pour tenter de reproduire au mieux l'évolution de chacun des systèmes.
5

Flow field and heat transfer in a rotating rib-roughened cooling passage / Champ d'écoulement et transfert de chaleur dans un passage de refroidissement à nervure nervurée rotative

Mayo Yague, Ignacio 28 July 2017 (has links)
Un grand effort a été réalisé ces dernières années dans la compréhension du champ d'écoulement et du transfert de chaleur dans les canaux de refroidissement internes présents dans les pales de turbine. En effet, des systèmes de refroidissement avancés ont non seulement conduit à l'augmentation de l'efficacité de la turbine à gaz en augmentant la température d'entrée de la turbine au-dessus de la température de fusion du matériau, mais également en augmentant la durée de vie de la turbine. Pour permettre de tels progrès, des techniques expérimentales et numériques modernes ont été largement appliquées afin d'interpréter et d'optimiser l'aérodynamique et le transfert de chaleur dans les canaux de refroidissement internes. Cependant, les données disponibles sont limitées dans le cas des canaux de refroidissement internes dans les aubes de rotor de turbine. Les gradients de rotation et de température introduisent des forces de flottabilité de type Coriolis et centripète dans le référentiel rotatif, modifiant de manière significative l'aérothermodynamique par rapport aux passages stationnaires. Dans le cas des pales de rotor de turbine, la plupart des investigations sont soit basées sur des mesures ponctuelles, soit sont contraintes à des régimes de rotation faibles. L'objectif principal de ce travail est d'étudier le débit détaillé et le transfert de chaleur d'un canal de refroidissement interne à des conditions de fonctionnement dimensionnelles sans moteur représentatives. Ce travail introduit une section d'essai en laboratoire qui exploite des canaux à nervures sur un large éventail de nombres de Reynolds, de rotation et de flottabilité. Dans le présent travail, le nombre de Reynolds va de 15,000 à 55,000, le nombre de rotation maximum est égal à 0.77 et le nombre maximal de flottabilité est égal à 0.77. La nouvelle installation expérimentale consiste en une conception polyvalente qui permet l'interchangeabilité de la géométrie testée, de sorte que les canaux de différents rapports d'aspect et les géométries de nervure peut être facilement installé. La particle image velocimetry et la thermographie à cristaux liquides sont effectuées pour fournir des mesures précises de vitesse et de transfert de chaleur dans les mêmes conditions opératoires, ce qui conduit à un ensemble de données expérimentales unique. De plus, des simulations à grands virages sont réalisées pour donner une image de l'ensemble du champ d'écoulement et compléter les observations expérimentales. En outre, l'approche numérique vise à fournir une méthodologie robuste qui est capable de fournir des prédictions haute-fidélité de la performance des canaux de refroidissement internes. / A great effort has been carried out over the recent years in the understanding of the flow field and heat transfer in the internal cooling channels present in turbine blades. Indeed, advanced cooling schemes have not only lead to the increase of the gas turbine efficiency by increasing the Turbine Inlet Temperature above the material melting temperature, but also the increase of the turbine lifespan. To allow such progresses, modern experimental and numerical techniques have been widely applied in order to interpret and optimize the aerodynamics and heat transfer in internal cooling channels. However, the available data is limited in the case of internal cooling channels in turbine rotor blades. Rotation and temperature gradients introduce Coriolis and centripetal buoyancy forces in the rotating frame of reference, modifying significantly the aerothermodynamics from that of the stationary passages. In the case of turbine rotor blades, most of the investigations are either based on point-wise measurements or are constraint to low rotational regimes. The main objective of this work is to study the detailed flow and heat transfer of an internal cooling channel at representative engine dimensionless operating conditions. This work introduces a laboratory test section that operates ribbed channels over a wide range of Reynolds, Rotation and Buoyancy numbers. In the present work, the Reynolds number ranges from 15,000 to 55,000, the maximum Rotation number is equal to 0.77, and the maximum Buoyancy number is equal to 0.77. The new experimental facility consists in a versatile design that allows the interchangeability of the tested geometry, so that channels of different aspect ratios and rib geometries can be easily fitted. Particle Image Velocimetry and Liquid Crystal Thermography are performed to provide accurate velocity and heat transfer measurements under the same operating conditions, which lead to a unique experimental data set. Moreover, Large Eddy Simulations are carried out to give a picture of the entire flow field and complement the experimental observations. Additionally, the numerical approach intends to provide a robust methodology that is able to provide high fidelity predictions of the performance of internal cooling channels.
6

Représentation des nuages chauds dans le modèle météorologique « MERCURE » : Application aux panaches d'aéroréfrigérants et aux précipitations orographiques

BOUZEREAU, Emmanuel 14 December 2004 (has links) (PDF)
Un schéma semi-spectral de microphysique chaude à 2 moments est mis en place dans le modèle météorologique « MERCURE ». Une nouvelle écriture du flux de flottabilité () est proposée ; elle est cohérente avec le corrigendum de Mellor (1977) mais diffère de Bougeault (1981). La microphysique nuageuse est validée par des simulations numériques d'une quinzaine de cas de panaches d'aéroréfrigérants qui sont comparées aux données provenant d'une campagne de mesures réalisées au Bugey en 1980. Des résultats satisfaisants sont obtenus sur la forme du panache, sur les champs de température et de vitesse verticale et sur les spectres de gouttelettes ; cependant les simulations ont tendance à surestimer le contenu en eau liquide. Le schéma microphysique est aussi testé sur les simulations de cas académiques de précipitations orographiques de Chaumerliac et al. (1987) et Richard et Chaumerliac (1989). Lors des simulations, nous retrouvons l'action de différents termes microphysiques.
7

Développement de modèles de turbulence adaptés à la simulation des écoulements de convection naturelle à haut nombre de Rayleigh / Turbulence modeling of natural convection flows at high Rayleigh number

Vanpouille, David 06 December 2013 (has links)
Un nouveau modèle de turbulence adapté aux écoulements turbulents soumis à laflottabilité a été développé en utilisant la configuration du canal plan vertical différentiellementchauffé comme référence. L’étude des DNS disponibles pour chacun des régimes de convection amontré les défauts des relations constitutives classiques conduisant à la mauvaise représentationdes écoulements de convection naturelle. Ces modèles ne prennent en compte ni le couplage deschamps thermique et dynamique ni l’anisotropie de l’écoulement, tout deux induits par la flottabilité.Une approche algébrique a donc été utilisées. L’hypothèse d’équilibre local a été validéedans une large partie du canal sauf dans la région de paroi et au voisinage d’un gradient devitesse nul, quel que soit le régime de convection. Les modèles homogènes et pariétaux pour lescorrélations de pression ont été étudiés et sélectionnés. Deux modèles EARSM et EAHFMprenant en compte les termes de flottabilité ont été développés. Ces modèles intègrent aussi destraitements spécifiques à la paroi reposant sur la pondération elliptique. Ils sont couplés à unmodèle corrigé pour mieux représenter le pic d’énergie cinétique turbulente prèsde la paroi. Le modèle complet a été confronté aux DNS sur la configuration du canal pourchacun des régimes de convection à travers des tests a priori et des calculs complets montrantdes résultats très encourageants et de meilleures prévisions que les modèles classiques. / A new turbulence model dedicated to buoyant flows is developped using the differentiallyheated vertical plane channel flow configuration as test case. For each convection regime,the examination of available DNS databases pointed out the failure of classical modeling topredict buoyant flows. Neither the coupling between thermics and dynamics nor the anisotropy,both due to the buoyancy, are considered by these models. So, algebraic models are used. Theweak equilibrium assumption is validated in a large part of the channel except in the wall regionand close to zero velocity gradient whatever the convection regime. The wall and homogeneousmodels for the pressure terms are investigated and selected. Then, an EARSM and an EAHFMare developped to include the buoyant terms. These models both include wall treatments. Theyare coupled with a model modified to improve the representation of the turbulentkinetic energy maximum close to the wall. The complete model is finally compared to theDNS on the channel flow configuration for all convection regime thanks to a priori tests andcomplete computations, showing encouraging results and better predictions than classical models

Page generated in 0.0625 seconds