• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Utilisation d'une population multi-parentale et hautement recombinante de blé tendre pour l'étude de l'architecture génétique de la précocité de floraison / Studying flowering time genetics in wheat through the use of a multiparent advanced generation inter-cross population

Thépot, Stéphanie 13 March 2014 (has links)
Aujourd'hui, alors que le nombre de marqueurs génétiques disponibles augmente rapidement, de nouvelles populations doivent être créées pour exploiter au mieux cette quantité d'informations dans le but de mieux comprendre l'architecture génétique de caractères complexes. Les populations de type MAGIC ont été créées pour rassembler les avantages des populations bi-parentales et des panels d'associations, la bonne puissance de détection et une localisation précise. L'objectif de cette thèse était d'étudier l'intérêt de la population MAGIC INRA pour l'analyse de l'architecture génétique de la précocité de floraison. Cette population a été créée à partir de 60 parents brassés durant 12 générations de panmixie grâce à l'introduction d'un gène de stérilité mâle (ms1b). Cette étude a été réalisée sur 56 parents toujours disponibles en banque de graines et 380 lignées dérivées de la population après les 12 générations de recombinaison. Cette population a été génotypée avec la puce 9K iSelect, représentant environ 5 000 SNPs localisés sur tout le génome, additionnée de 14 marqueurs localisés dans des gènes candidats. Ce jeu de données moléculaires a été complété par des données fines de phénotypage de la précocité de floraison. Suite aux 12 générations de panmixie, le DL de cette population a été très réduit, à longue comme à moyenne distance (<10cM). Ce faible DL nous a amené à développer un algorithme basé uniquement sur le DL qui ordonne les marqueurs de manière à avoir un DL décroissant monotone avec la distance. L'algorithme ordonne globalement de la même manière que la carte génétique les marqueurs à longue distance mais à courte distance le DL est moins lié à la distance génétique. La différence réside sur l'équilibre entre les effets de la recombinaison et de la dérive génétique sur le DL. L'intérêt de la population MAGIC INRA pour détecter des QTLs a ensuite été étudié avec deux approches : une approche évolutionniste et une approche de génétique d'association. La première approche détecte les loci soumis à sélection par comparaison des fréquences alléliques de la population initiale (G0) et de la population évoluée (G12) grâce à une nouvelle méthode. La population initiale est composée des parents pondérés par une contribution estimée avec une nouvelle méthode bayésienne. 26 régions génomiques soumises à sélection ont été détectées. Une analyse de génétique d'association avec les marqueurs détectés sous sélection a montré que respectivement cinq et trois zones étaient associées à la précocité avec un semis d'automne et au caractère printemps/hiver. Une analyse phénotypique a effectivement mis en évidence la précocification de la date de floraison et une augmentation de la proportion de plantes de type printemps. Une analyse de génétique d'association a ensuite été réalisée sur les lignées SSD sur 12 caractères x environnements i.e. la date d'épiaison et le temps de remplissage du grain mesurés dans six environnements. Les tests d'association ont aussi été réalisés avec des variables synthétisant l'information présente dans plusieurs traits phénotypiques soit avec une ACP, soit avec un modèle écophysiologique. Au total, toutes ces analyses ont détecté six QTLs dont trois correspondants à des gènes majeurs. Parmi ces six QTLs, deux sont spécifiques des caractères mesurés avec un semis d'automne et deux avec ceux mesurés avec un semis de printemps. / Nowadays, with the dramatically increase of available molecular markers, there is a deep need for new populations allowing to exploit all of this information to better understand the genetic architecture of complex traits. MAGIC populations as they are built to bring together bi-parental populations and association panel advantages, provide such powerful detection and fine mapping capacities. The aim of these PhD was to study the MAGIC INRA population usefulness for the study of genetic architecture of earliness. This population is derived from 12 cycles of random crosses between 60 founders, turning wheat from selfing to outcrossing thanks to the use of a nuclear male sterility gene (ms1b, Probus donor). This population is composed of 56 parents still available and 380 SSD lines. Parents and SSD lines were genotyped using the 9K iSelect SNPs array, providing around 5 000 SNPs on the whole genome, as well as 14 addition markers located in candidate genes. They were also finely phenotyped for earliness traits. With the 12 panmictic generations, the population LD decreased strongly, especially at long and medium distance (<10cM). This allowed us to develop an algorithm mapping markers on the sole pairwise LD information, ordering markers in a way to have the LD decreasing along the distance. When considering long distances, overall the results were consistent with the order found on genetic maps while at short distance LD was poorly linked to genetic distance. These differences between long and short distances were linked to the balance between recombination and drift effects on LD. The usefulness of the MAGIC INRA population for QTL detection was analyzed with two approaches: an evolutionary approach and an association genetics approach. The first one detects loci under selection by identifying high shift in allelic frequency with a new method. The initial population was composed of founders weighted by a contribution estimated with a new Bayesian method. 26 genomic areas under selection were detected. An association genetics analysis with the markers detected as under selection showed respectively five and three genomic regions associated with earliness and growth habit. Actually the G12 population was found phenotypically earlier than the G0 and with more spring individuals. A broader association genetics analysis was performed on G12 population, studying 12 traits x environments i.e. heading date and grain filling time, both observed in six environmental conditions. Two additional integrated traits from either PCA or ecophysiological model were also analyzed. In all, these different analyses detected six QTLs, three of them corresponding to candidate genes. Among these six QTLs, two were specific to autumn sowing and two specific to spring sowing.
42

The molecular genotyping of flower development genes and allelic variations in ‘historic’ barley accessions

Aslan, Selcuk January 2010 (has links)
<p>This is a genetic study of flowering time in cultivated barley with the aim to identify the alleles contributing to rapid flowering and frost resistance. We have genotyped a collection of 23 historic barley varieties for the crucial genes [<em>VRN-1, VRN-2, VRN-3</em> (<em>HvFT</em>), <em>Ppd-H1, CO</em>, and <em>Vrs1</em>]. We have amplified the polymorphic mutations by PCR-based methods, and sequenced them to identify possible haplotype groups. The row type was not determined of all accessions, but all the Scandinavian varieties were found to carry mutant alleles of <em>Vrs1</em>, that indicates them to be six-row barleys. The deletion of the crucial segment of <em>VRN-1 </em>vernalization contributes dominant spring growth habit. We found haplotype groups 2 and 4 to be dominant in Northern barleys whereas haplotype groups 1 and 5 dominated in south. The presence of dominant allele <em>VRN-2</em> gene is addressed to floral repression until plants get vernalized. Most of the 23 varieties were found to have deleted allele of <em>VRN-2</em>, which is connected with a spring growth habit. The only four of the accessions that have the dominant allele of <em>Ppd-H1</em> that contribute flowering are generally from the south of Europe. <em>HvFT</em> and <em>CO</em> genes <em>CO</em>-interact to influence flowering time. <em>CO</em> haplotype grouping suggest a geographical distribution of different alleles but needs more disseminations. Certain <em>HvFT</em> alleles cause extremely early flowering during apex development in the varieties that have deletion of <em>VRN-2</em> alleles under long days. <em>VRN-3</em> alleles of 14 varieties were identified.</p>
43

Plant-Animal Interactions and Evolution of Floral Display and Flowering Phenology in <i>Arabidopsis lyrata</i> / Samspelet mellan växter och djur och evolution av blommor och blomningstid hos strandtrav

Sandring, Saskia January 2007 (has links)
<p>In this thesis, I combined comparative and experimental approaches to examine selection on reproductive traits, and population differentiation in the insect-pollinated, outcrossing, perennial herb <i>Arabidopsis lyrata</i>. More specifically, I (1) determined whether selection on flowering phenology and floral display can be attributed to interactions with pollinators and herbivores, (2) examined whether population differentiation in flowering phenology and floral display is correlated with current selection on these traits, and (3) tested for local adaptation from contrasting environments in Europe.</p><p>A field experiment conducted in a Swedish population demonstrated, that interactions with pollinators may markedly affect selection on both floral display and phenology of flowering. In an alpine population in Norway, grazing damage to inflorescences strongly influenced selection on floral display. The results suggest that variation in the abundance of pollinators and herbivores should contribute to spatio-temporal variation in selection on flowering phenology and floral display in <i>A. lyrata</i>. </p><p>A common-garden experiment showed that flowering phenology and floral display vary among Scandinavian populations of <i>A. lyrata</i>. For some traits patterns of population differentiation were consistent with differences in the direction and strength of phenotypic selection determined in comparisons (a) between an alpine population in Norway and a coastal population in Sweden, and (b) among coastal populations in Sweden. This suggests that current selection contributes to the maintenance of genetic differentiation in these traits.</p><p>Adaptive differentiation among populations was examined in a reciprocal transplant experiment that included populations from three contrasting environments, alpine Norway, coastal Sweden and lowland, continental Germany. The experiment provided evidence for local adaptation, and indicated that populations have diverged in traits affecting plant establishment and early growth.</p>
44

Contribution à l'analyse fonctionnelle des gènes FLOWERING LOCUS C (FLC) et CONSTANS (CO) impliqués dans la floraison de Sinapis alba

D'Aloia, Maria 25 May 2007
Onset of flowering is a major transition in the plant life cycle and is controlled by environmental factors including photoperiod, light quality and temperature. Prevalence of controlling factors depends on species, hence physiological models were selected for their strong requirement for one or another environmental cue. Among Brassicaceae, Sinapis alba was intensively studied for its strong response to photoperiod while molecular-genetic analyses of Arabidopsis thaliana disclosed complex interactions between pathways inducing flowering in response to photoperiod and other environmental cues, such as vernalization. We were therefore interested in studying the vernalization process in S. alba and its interactions with the previously characterized floral response to long days (LDs). Two-week old seedlings grown in non-inductive short days (SDs) were vernalized at 7°C for increasing durations and a strong promotive effect of vernalization was observed. In contrast to the common view of vernalization as a preliminary step bringing the competence to flower, we observed that vernalization had a direct inductive effect on flowering: floral buds were initiated during cold-exposure. Floral integrator genes SaMADSA (homologous to SUPPRESSOR OF OVEREXPRESSION OF CO 1) and SaLEAFY were up-regulated in the shoot apex after 3-4 weeks of vernalization. To monitor the vernalization process at the molecular level, we isolated SaFLC which, based on sequence analysis, expression patterns and complementation test, appeared as orthologous to FLOWERING LOCUS C. Down-regulation of SaFLC by vernalization was fast since transcript level was already very low after one week of vernalization, but stability of the repression required longer exposure to cold. To test the physiological significance of these observations, we studied the floral response to 16-h LDs after unstable and stable repression of SaFLC. We observed that one week of vernalization which was sufficient for SaFLC repression but not for maintenance of the silenced state - increased the flowering response of S. alba to LDs when the LDs just followed the cold treatment. This effect was lost after two weeks post-vernalization. In contrast, the promotive effect of longer vernalization on flowering response to LDs was maintained post-vernalization. These results suggested that vernalization not only works when plants experience long exposure to cold in winter: short cold periods might stimulate flowering of LD-plants if occurring when photoperiod is increasing, i.e. in spring.
45

Plant-Animal Interactions and Evolution of Floral Display and Flowering Phenology in Arabidopsis lyrata / Samspelet mellan växter och djur och evolution av blommor och blomningstid hos strandtrav

Sandring, Saskia January 2007 (has links)
In this thesis, I combined comparative and experimental approaches to examine selection on reproductive traits, and population differentiation in the insect-pollinated, outcrossing, perennial herb Arabidopsis lyrata. More specifically, I (1) determined whether selection on flowering phenology and floral display can be attributed to interactions with pollinators and herbivores, (2) examined whether population differentiation in flowering phenology and floral display is correlated with current selection on these traits, and (3) tested for local adaptation from contrasting environments in Europe. A field experiment conducted in a Swedish population demonstrated, that interactions with pollinators may markedly affect selection on both floral display and phenology of flowering. In an alpine population in Norway, grazing damage to inflorescences strongly influenced selection on floral display. The results suggest that variation in the abundance of pollinators and herbivores should contribute to spatio-temporal variation in selection on flowering phenology and floral display in A. lyrata. A common-garden experiment showed that flowering phenology and floral display vary among Scandinavian populations of A. lyrata. For some traits patterns of population differentiation were consistent with differences in the direction and strength of phenotypic selection determined in comparisons (a) between an alpine population in Norway and a coastal population in Sweden, and (b) among coastal populations in Sweden. This suggests that current selection contributes to the maintenance of genetic differentiation in these traits. Adaptive differentiation among populations was examined in a reciprocal transplant experiment that included populations from three contrasting environments, alpine Norway, coastal Sweden and lowland, continental Germany. The experiment provided evidence for local adaptation, and indicated that populations have diverged in traits affecting plant establishment and early growth.
46

Evolutionary genetics and ecology of water use efficiency ([delta]¹³C) in Ipomopsis agregata and Arabidopsis thaliana

Kenney, Amanda Marie 31 January 2012 (has links)
My dissertation research investigates the genetic architecture and evolutionary significance of physiological variation in two wildflower species, Ipomopsis aggregata and Arabidopsis thaliana. In particular, my work focuses on water use efficiency (WUE), a critical physiological trait that dictates plant growth and performance in resource-limited environments. I used a combination of quantitative trait loci (QTL) mapping, field selection experiments, and classic quantitative genetics to investigate 1) the genetic architecture of water use efficiency and flowering time, 2) patterns of natural selection on water use efficiency, flowering time, and other ecological traits in I. aggregata, and 3) additive genetic variation, genetic correlations, and selection on water use efficiency, flowering time, and plasticity to drought in Arabidopsis thaliana. Using an Ipomopsis aggregata genetic mapping population, I identified four QTL underlying WUE, three QTL-QTL epistatic interactions, and evidence for a possible QTL x cytoplasmic interaction affecting WUE. I found a similar genetic architecture underlying flowering time, with four main effect QTLs that all adjacently localized to the same linkage groups as WUE, and three QTL-QTL epistatic interactions, which occur between the same chromosome pairs as the WUE interactions. The combined main and interactive effects explain 35% and 40% of the phenotypic variation in WUE and flowering time, respectively. The adjacent localization suggests a possible role for the evolution of co-inheritance or, if the true QTL positions actually overlap, a possible role for pleiotropy underlying the phenotypic correlation between WUE and flowering time. Additionally, these results suggest epistasis is a significant factor affecting phenotypic variation in nature. In a reciprocal transplant and water addition experiment, I demonstrated variable natural selection on WUE, flowering time, and nectar production in I. aggregata across elevation/habitat and differential water availability. At low elevation in the water addition treatment, natural selection favors early flowering and greater nectar sugar concentration, while dry conditions favor high WUE and early flowering time. At high elevation, where the growing season is shorter and drier, selection favors early flowering regardless of water addition. These results suggest natural selection on ecophysiological and floral traits varies with resource availability (e.g. water availability and pollinator visitation). Using data from a glasshouse experiment involving a global panel of accessions of Arabidopsis thaliana, I demonstrated strong positive genetic correlation between WUE and flowering time, as well as selection for low WUE and early flowering under experimental season-ending drought. Finally, I found significant genetic variation in plasticity as well as selection favoring greater WUE plasticity under drought, indicating plasticity to drought is adaptive in A. thaliana. / text
47

The molecular genotyping of flower development genes and allelic variations in ‘historic’ barley accessions

Aslan, Selcuk January 2010 (has links)
This is a genetic study of flowering time in cultivated barley with the aim to identify the alleles contributing to rapid flowering and frost resistance. We have genotyped a collection of 23 historic barley varieties for the crucial genes [VRN-1, VRN-2, VRN-3 (HvFT), Ppd-H1, CO, and Vrs1]. We have amplified the polymorphic mutations by PCR-based methods, and sequenced them to identify possible haplotype groups. The row type was not determined of all accessions, but all the Scandinavian varieties were found to carry mutant alleles of Vrs1, that indicates them to be six-row barleys. The deletion of the crucial segment of VRN-1 vernalization contributes dominant spring growth habit. We found haplotype groups 2 and 4 to be dominant in Northern barleys whereas haplotype groups 1 and 5 dominated in south. The presence of dominant allele VRN-2 gene is addressed to floral repression until plants get vernalized. Most of the 23 varieties were found to have deleted allele of VRN-2, which is connected with a spring growth habit. The only four of the accessions that have the dominant allele of Ppd-H1 that contribute flowering are generally from the south of Europe. HvFT and CO genes CO-interact to influence flowering time. CO haplotype grouping suggest a geographical distribution of different alleles but needs more disseminations. Certain HvFT alleles cause extremely early flowering during apex development in the varieties that have deletion of VRN-2 alleles under long days. VRN-3 alleles of 14 varieties were identified.
48

Life History and Tolerance and Resistance against Herbivores in Natural Populations of Arabidopsis thaliana

Akiyama, Reiko January 2011 (has links)
In this thesis, I combined observational studies with field and greenhouse experiments to examine selection on life history traits and variation in tolerance and resistance against herbivores in natural populations of the annual herb Arabidopsis thaliana in its native range. I investigated (1) phenotypic selection on flowering time and plant size, (2) the effects of timing of germination on plant fitness, (3) the effect of leaf damage on seed production, and (4) correlations between resistance against a specialist and a generalist insect herbivore. In all three study populations, flowering time was negatively related to plant fitness, but in only one of the populations, significant selection on flowering time was detected when controlling for size prior to the flowering season. The results show that correlations between flowering time and plant fecundity may be confounded by variation in plant size prior to the reproductive season. A field experiment detected conflicting selection on germination time: Early germination was associated with low seedling survival, but also with large leaf rosette before winter and high survival and fecundity among established plants. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination, and that the optimal timing of germination should vary in space and time as a function of the relative strength of selection acting during different life-history stages. Experimental leaf damage demonstrated that tolerance to damage was lowest among vegetative plants early in the season, and highest among flowering plants later in the season. Given similar damage levels, leaf herbivores feeding on plants before flowering should thus exert stronger selection on defence traits than those feeding on plants during flowering. Resistance against larval feeding by the specialist Plutella xylostella was negatively correlated with resistance against larval feeding by the generalist Mamestra brassicae and with resistance against oviposition by P. xylostella when variation in resistance was examined within and among two Swedish and two Italian A. thaliana populations. The results suggest that negative correlations between resistance against different herbivores and different life-history stages of herbivores may contribute to the maintenance of genetic variation in resistance.
49

Genetic consequences of directional selection in <em>Arabidopsis lyrata</em>

Toivainen, T. (Tuomas) 01 December 2014 (has links)
Abstract Plants and animals colonized Northern Europe after the last Ice Age from different refugia, not covered by the ice sheet. Many plants, such as the northern rock cress (Arabidopsis lyrata ssp. petraea) adapted to the short growing season in the North. We thus expect that colonization of the new environment was accompanied by directional selection for traits conferring this adaptation. In this thesis I studied whether recent directional selection can be detected in two important genes, PHYTOCHROME A (PHYA) and FLOWERING LOCUS C1 (FLC1), related to the flowering time pathway. To detect directional selection, I compared DNA sequence variation from the samples of a southern (Plech, Germany) and a northern (Spiterstulen, Norway) population. I also studied the current response potential to changing conditions in the marginal Spiterstulen population. Adaptation potential was characterized by assessing plasticity and amount of additive genetic variation, focusing on flowering traits. In addition, associations of 21 flowering time candidate genes for phenological and fitness traits were studied. There were several lines of evidence for recent directional selection in both candidate genes, PHYA and FLC1, in the northern Spiterstulen population Variation was strongly reduced around both genes and in addition they were highly differentiated between populations. In the Spiterstulen population there was a remarkable reduction in additive genetic variation for flowering traits, for instance when compared with morphological traits. On the other hand, phenological traits showed high plasticity. Some of the photoperiodic pathway genes showed association to flowering or reproductive fitness. The results suggest that directional selection during the colonization of the northern areas has impacted the two studied genes. Genetic changes were likely involved in altered photoperiodic and vernalization responses which might be adaptive for a short growing season. Further, directional selection was probably responsible for reducing additive genetic variation in flowering traits. Because there was only little genetic variation, adaptation to future environmental change of the marginal Spiterstulen population is likely to rely largely on plastic reactions to environmental signals, or tracking the environment by dispersal. / Tiivistelmä Kasvit ja eläimet levittäytyivät Pohjois-Eurooppaan viimeisen jääkauden jälkeen mannerjäätikön ulkopuolella jääneistä refugioista. Useat kasvit, kuten idänpitkäpalko (Arabidopsis lyrata ssp. petraea) sopeutuivat pohjoisen lyhyeen kasvukauteen. On syytä olettaa, että suuntaava valinta vaikutti sopeutumisessa tärkeisiin ominaisuuksiin. Tässä väitöskirjassa tutkin voidaanko suuntaavan valinnan aiheuttamia jalanjälkiä löytää kahdesta tärkeästä kukkimisaikageenistä, FYTOKROMI A (PHYA) ja FLOWERING LOCUS C1 (FLC1) geeneistä. Tätä varten vertasin DNA sekvenssimuuntelua pohjoisessa (Norja) ja eteläisessä (Saksa) populaatiossa, kiinnittäen erityisesti huomiota geneettisen muuntelun määrään ja erilaistumiseen. Lisäksi tutkin miten Spiterstulenin reunapopulaatio voi vastata tulevaisuudessa muuttuvaan ympäristöön. Sopeutumispotentiaalia arvioitiin sekä fenotyyppisen plastisuuden että additiivisen geneettisen muuntelun määrällä. Lisäksi tutkin miten vaihtelu 21 kukkimisaikageenissä liittyy fenologisiin ja kelpoisuusominaisuuksiin. Useat merkit viittasivat siihen, että suuntaava valinta oli vaikuttanut kummassakin tutkitussa geenissä. Muuntelu oli vähentynyt voimakkaasti kumpaakin geeniä ympäröiviltä kromosomialueilta, jotka olivat myös selkeästi erilaistuneet. Additiivinen geneettinen muuntelu oli selvästi vähentynyt kukkimisominaisuuksissa verrattuna morfologisiin ominaisuuksiin, mahdollisesti suuntaavan valinnan johdosta. Kukkimisominaisuudet olivat kuitenkin plastisia. Jotkin valojaksoreitin geenit vaikuttivat sekä kukkimiseen että lisääntymiskykyyn. Nämä tulokset osoittavat että suuntaava valinta vaikutti kahteen tutkittuun geeniin pohjoiseen levittäytymisen aikana. Geneettiset muutokset liittyivät todennäköisesti muuttuneisiin valojakso-, ja vernalisaatiovasteisiin, jotka saattoivat edistää sopeutumista lyhyeen kasvukauteen. Koska geneettistä muuntelua oli vain hyvin vähän, fenotyyppisellä plastisuudella on todennäköisesti tärkeä rooli sopeutumisessa muuttuvaan ympäristöön Spiterstulenin reunapopulaatiossa.
50

Flowering time and natural selection in <em>Arabidopsis lyrata</em>

Riihimäki, M.-A. (Mona-Anitta) 12 August 2005 (has links)
Abstract Arabidopsis lyrata is a close outcrossing relative of Arabidopsis thaliana, the model organism of plant physiology and molecular biology. I studied variation in flowering time and the factors shaping the variation within and between A. lyrata populations in different environments. The role of the two important proximate factors determining flowering time, day length and temperature, were studied in climate chambers. The southern A. lyrata populations were found to flower in high frequency and quicker than northern A. lyrata populations in all studied environments, but the reaction of northern populations on long day length was found to be stronger than that of southern populations. Differences in vernalization requirement between A. lyrata populations were found in outdoor common garden, but in the climate chambers the results of vernalization experiments were not consistent. Strength and direction of selection on flowering time and other life history traits were studied in alpine and lowland A. lyrata populations in Scandinavia. Differences in selection were found both between populations and between years. Grazing sheep caused high levels of damage in inflorescences in the alpine population. In the lowland population there was less herbivory, caused by insects and hares. The difference in selection on flowering traits in the two study populations might be partly caused by selective grazing. Completely outcrossing mating system in A. lyrata is due to well developed self-incompatibility system. However, biparental inbreeding is likely to exist in natural populations and it may lead to spatial structuring of genetic variation within populations. I studied the effects of biparental inbreeding on components of fitness in A. lyrata in three different environments. I found inbreeding depression after sib-mating to be substantial. Stressful environment reduced the overall performance of the plants, but had no effect on the magnitude of inbreeding depression. A literature survey indicates that the observed levels of inbreeding depression in self-incompatible A. lyrata were higher than those of self-compatible species. This suggests that self-compatible species have purged some of their genetic load. The genetic basis of flowering time variation in A. lyrata can be further studied by using A. thaliana molecular tools.

Page generated in 0.1486 seconds