1 |
Fixed-scale statistics and the geometry of turbulent dispersion at high reynolds number via numerical simulationHackl, Jason F. 17 May 2011 (has links)
The relative dispersion of one fluid particle with respect to another is
fundamentally related to the transport and mixing of contaminant species in
turbulent flows. The most basic consequence of Kolmogorov's 1941 similarity
hypotheses for relative dispersion, the Richardson-Obukhov law that mean-square
pair separation distance grows with the cube of time
at intermediate times in the inertial subrange, is notoriously difficult to
observe in the environment, laboratory, and direct numerical simulations (DNS).
Inertial subrange scaling in size parameters like the mean-square pair separation requires
careful adjustment for the initial conditions of the dispersion process as well
as a very wide range of scales (high Reynolds number) in the flow being studied.
However, the statistical evolution of the shapes of clusters of more than two
particles has already exhibited statistical invariance at intermediate times in
existing DNS. This invariance is identified with inertial-subrange scaling and
is more readily observed than inertial-subrange scaling for seemingly simpler quantities such as the mean-square pair separation
Results from dispersion of clusters of four particles (called tetrads) in
large-scale DNS at grid resolutions up to 4096 points in each of three directions and Taylor-scale Reynolds
numbers from 140 to 1000 are used to explore the question of
statistical universality in measures of the size and shape of tetrahedra in
homogeneous isotropic turbulence in distinct scaling regimes at very small times
(ballistic), intermediate times (inertial) and very late times (diffusive).
Derivatives of fractional powers of the mean-square pair separation with respect to time normalized by the
characteristic time scale at the initial tetrad size constitute a powerful
technique in isolating cubic time scaling in the mean-square pair separation. This technique
is applied to the eigenvalues of a moment-of-inertia-like tensor formed from the
separation vectors between particles in the tetrad. Estimates of the
proportionality constant "g" in the Richardson-Obukhov law from DNS at a
Taylor-scale Reynolds number of 1000 converge towards the value g=0.56 reported in
previous studies. The exit time taken by a particle pair to first reach
successively larger thresholds of fixed separation distance is also briefly
discussed and found to have unexplained dependence on initial separation
distance for negative moments, but good inertial range scaling for positive
moments. The use of diffusion models of relative dispersion in the inertial
subrange to connect mean exit time to "g" is also tested and briefly discussed
in these simulations.
Mean values and probability density functions of shape
parameters including the triangle aspect ratio "w," tetrahedron
volume-to-gyration radius ratio, and normalized moment-of-inertia
eigenvalues are all found to approach invariant forms in the inertial subrange
for a wider range of initial separations than size parameters such as
mean-square gyration radius. These results constitute the
clearest evidence to date that turbulence has a
tendency to distort and elongate multiparticle configurations more severely in
the inertial subrange than it does in the diffusive regime at asymptotically
late time. Triangle statistics are found to be independent of
initial shape for all time beyond the ballistic regime.
The development and testing of different schemes for parallelizing the cubic
spline interpolation procedure for particle velocities needed to track particles in DNS is also covered. A "pipeline" method of moving batches of particles
from processor to processor is adopted due to its low memory overhead, but there are challenges in achieving good performance scaling.
|
2 |
Approche multi-échelle pour les écoulements fluide-particules / Multiscale approach for particulate flowsBernard, Manuel 06 November 2014 (has links)
Cette thèse porte sur l’étude numérique de la dynamique des écoulements fluide-particules au sein des lits fluidisés denses. Le but de ces travaux est d’améliorer la compréhension des phénomènes qui s’y déroulent afin d’optimiser les performances des procédés industriels confrontés à ces écoulements diphasiques. En effet, la diversité des échelles de longueur et les différents types d’interaction fluide-solide et solide-solide rencontrées dans ce type de configuration rendent cette catégorie d’écoulement particulièrement complexe et intéressante à étudier. Le modèle développé à cet effet permet de suivre individuellement la trajectoire des particules et de traiter les collisions avec leurs voisines tandis que la phase fluide est décrite de façon localement moyennée. Dans ce mémoire, nous présentons tout d’abord les origines physiques du phénomène de fluidisation d’une population de particules et les grandeurs physiques qui le caractérisent. Puis nous détaillons le modèle Euler-Lagrange implémenté et présentons une série de tests de validation basés sur des résultats théoriques et des comparaisons à des résultats expérimentaux. Cet outil numérique est ensuite employé pour simuler et étudier des lits fluidisés comportant jusqu’à plusieurs dizaines de millions de particules. Enfin, nous comparons des simulations réalisées conjointement à l’échelle micro et avec le modèle développé au cours de cette thèse à l’échelle méso. / This thesis deals with numerical analysis of particulate flows within dense fluidized beds. The aim of this work is to improve phenomena understanding in such flows in order to optimize engineering processes design. Wide variety of length scales and various fluid-solid and solid-solid interactions makes complex and challenging this type of flows study. The present developed model permits individual particle tracking and handle particles collisions whereas fluid flow is space averaged. In this manuscript, we first present origins of fluidization phenomenon and describe the macroscopic quantities which characterize it. Then we introduce the Euler-Lagrange model we developed and detail its numerical implementation. Moreover, we present a bench of validation tests based both on theoretical results and experimental data comparison. This numerical tool is then used to simulate and study fluidized beds containing up to several tenth of millions particles. Finally, we compare simulations performed both at micro and meso scales, i.e. with the model developed during this thesis.
|
3 |
Um método computacional para modelagem de problemas de fluidos carregados com partículas. / A computational method for modeling of particle-laden fluid problems.Fernandes, Ana Carolina da Silva 22 May 2019 (has links)
Neste trabalho, apresenta-se um estudo a respeito de problemas de interação Fluido-Partícula e dos métodos e formulações usados para resolvê-los. Além disso, propõe-se um novo método para resolver problemas acoplados de mecânica dos fluidos e mecânica das partículas. A ideia é baseada em trabalhos anteriores de (Gomes e Pimenta 2015) e (Campello 2016), e o objetivo é desenvolver um modelo computacional adequado e eficiente para simular problemas envolvendo fluidos carregados com partículas sólidas. O problema de fluido é resolvido por uma abordagem Euleriana de elementos finitos, usando elementos mistos locais de velocidade-pressão, os quais satisfazem a condição de compatibilidade LBB. O sistema de equações não linear obtido é resolvido iterativamente pelo método de Newton-Raphson. Uma característica importante é que a malha de fluidos permanece fixa durante a passagem do fluxo, assim como nas abordagens Eulerianas clássicas. O problema das partículas, por sua vez, é resolvido com uma abordagem Lagrangiana de elementos discretos, em que os contatos de partícula com partícula e partícula com paredes (limites fixos) são livremente permitidos e resolvidos. A influência do fluido no movimento das partículas é representada por meio de forças e momentos, que são calculados a partir do escoamento e impostos às partículas de maneira acoplada, iterativa e explícita. As interfaces entre o fluido e as partículas são tratadas por meio da técnica de fronteiras imersas, onde as condições de contorno do fluido nos contatos com partículas são impostas através da interpolação de funções descontínuas e constantes de multiplicadores de Lagrange ao longo das interfaces. É adotado um método explícito, interativo e escalonado para conseguir a convergência dentro de cada passo de tempo do problema. Para ilustrar o potencial do método proposto, são apresentadas simulações de escoamentos carregados de partículas. / In this work, a study is presented on Fluid-Particle interaction problems and the methods and formulations used to solve them. In addition, is proposed a new method for solving coupled problems of fluid mechanics and particle mechanics. The idea is based on previous works by (Gomes e Pimenta 2015) and (Campello 2016), and the goal is to develop an efficient computational model suited to simulate problems involving flowing fluid media laden with solid particles. The fluid problem is resolved by an Eulerian finite element approach using local element velocity-pressure pairs satisfying the LBB compatibility condition, with the resulting nonlinear system of equations being iteratively solved by the Newton-Raphson method. As an important feature, the fluid mesh remains fixed during the flow, just as in classical Eulerian approaches. The particles´ problem, in turn, is resolved in a Lagrangian discrete element approach, wherein both particle-to-particle and particle-to-wall (fixed boundaries) contacts are freely permitted and resolved. The influence of the fluid on the motion of the particles is represented by means of forces and moments, which are computed from the fluid flow and imposed on the particles in a coupled, iterative and explicit way. The fluid-particles´ interfaces are treated by means of immersed boundary technique, in which the fluid interface conditions with the (nonmatching) particles´ boundaries are imposed through discontinuous piecewise constant Lagrange multipliers interpolating functions along the interfaces. An explicit, staggered and interactive scheme is adopted to achieve convergence within each time step of the problem. In order to illustrate the potentialities of the proposed scheme, particle-laden fluid flow simulations are presented.
|
4 |
Etude numérique et expérimentale de la déstabilisation des milieux granulaires immergés par fluidisation / Numerical and experimental study of the destabilization of a submerged granular bed by fluidizationNgoma, Jeff 08 April 2015 (has links)
Ce travail de thèse a pour objet l’étude numérique et expérimentale de la déstabilisation de milieux granulaires immergés par fluidisation. Cette instabilité hydromécanique est un mécanisme précurseur de l’érosion régressive, processus de dégradation au coeur de la problématique de l’érosion interne des ouvrages hydrauliques en terre. La compréhension de ces mécanismes d’érosion nécessite une description rigoureuse du couplage et de l’interaction entre le fluide et les particules de sol. A cette fin, un modèle 2D a été utilisé en couplant deux méthodes particulaires, la méthode des éléments discrets (DEM) pour modéliser le comportement mécanique de la phase solide et la méthode Lattice Boltzmann (LBM) pour la phase fluide. Des expériences servant de validation à cette simulation numérique 2D ont également été réalisées en s’appuyant sur une technique de visualisation interne d’un empilement granulaire combinant l’ajustement d’indice de réfraction des deux phases et la fluorescence induite par plan laser. / The subject of this thesis is the numerical analysis and experimental investigation of the destabilization of submerged granular media caused by fluidization. This hydromechanical instability is one of the mechanisms that may trigger the regressive erosion, which is one of the main degradation phenomena driving the internal erosion of earthen hydraulic constructions. Such erosion mechanisms can only be understood through a rigorous description of the coupling and interaction between the eroding fluid and the soil particles. For this purpose, a 2D model has been used coupling two different numerical techniques, namely the discrete element method (DEM) for modelling the mechanical behaviour of the solid phase and the Lattice Boltzmann method (LBM) for the fluid phase. The experimental validation of this numerical 2D simulation has been carried out using two optical techniques for the internal visualization of a granular sample, namely the adjustment of the refraction index of the two phases and the laser-induced fluorescence.
|
Page generated in 0.0746 seconds