• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 73
  • 46
  • 23
  • 15
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 260
  • 114
  • 53
  • 37
  • 32
  • 30
  • 29
  • 26
  • 25
  • 25
  • 24
  • 22
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Composés radiopharmaceutiques marqués au fluor-18 utilisés en routine clinique: nouvelles méthodes de production et validation animale / Florine-18 labelled radiopharmaceuticals in clinical routine use: new methods of production and animal validation

Aerts, Joël 18 December 2008 (has links)
RESUME: Le travail de recherche rapporté dans cette thèse concerne lamélioration de traceurs marqués au fluor-18 utilisés en routine clinique : la 2-[18F]fluoro-L-tyrosine et le 2-désoxy-2-[18F]fluoro-D-glucose. Les résultats relatifs à lacide aminé, de valeur confirmative pour les connaissances publiées antérieurement dans la littérature, consistent en une validation chez le rat qui entérine le potentiel de ce traceur pour létude de la vitesse de synthèse des protéines cérébrales in vivo. Les perspectives futures pour ce traceur sont dès lors lextension de son utilité dans le domaine de loncologie et son utilisation pour létude de phénomènes physiologiques neurologiques. Durant ce travail, des techniques décrites dans la littérature, mais non pratiquées au CRC ont fait lobjet dune implémentation et sont maintenant accessibles (modèle du rat vigile, méthodes de synthèse de polymères à empreinte moléculaire). La partie principale du travail concerne la récupération du [18F]fluorure et son utilisation pour le marquage nucléophile sans étape dévaporation. La synthèse du 2-désoxy-2-[18F]fluoro-D-glucose a servi de réaction témoin pour tester lapplicabilité des méthodes développées dans ce cadre. Deux stratégies différentes, lune utilisant des supports ioniques et des solvants protiques, lautre utilisant des supports non ioniques et des solvants non protiques, ont permis datteindre les buts fixés avec des rendements dincorporation du [18F]fluorure de même ordre de grandeur que ceux obtenus en radiochimie usuelle du fluor-18. La méthode utilisant les supports non ioniques a par ailleurs démontré sa grande généralité vis-à-vis de précurseurs divers, aliphatiques et aromatiques, dans des conditions de marquage diverses, notamment à température modérée. Les perspectives de ces méthodes nouvelles pour la fabrication des traceurs TEP tirent parti de la possibilité de les implanter dans un automate miniaturisé (milli- ou micro-réacteur), à visée synthétique ou analytique. Lefficacité et la simplicité des méthodes de récupération sans évaporation mises au point dans ce travail les destinent à être utilisées aussi bien en développement des traceurs quen synthèse de routine. Elles sont applicables aussi bien à léchelle des automates courants quà celle des futures applications microfluidiques. Par ailleurs, nous sommes persuadés de lintérêt des polymères à empreinte moléculaire dans le créneau des méthodes analytiques. Egalement applicables à des systèmes miniaturisés, ils devraient aider à la réalisation danalyses automatisées des produits finis et à une libération accélérée. Le gain de temps et les moindres pertes de principe actif conduiront alors à une meilleure disponibilité des traceurs TEP et à leur participation accrue aux objectifs de la médecine personnalisée. Nous pensons dès lors avoir ouvert quelques pistes de recherche prometteuses pour la mise en application de ses nouvelles technologies au domaine de la tomographie à émission de positon. / SUMMARY: The results reported in this work concern the improvement of 18-fluorine labelled radiopharmaceuticals used in routine clinical applications: 2-[18F]fluoro-L-tyrosine and 2-deoxy-2-[18F]fluoro-D-glucose. The study of the metabolism of non carrier added 2-[18F]fluoro-L-tyrosine in rats confirms that this tracer is rapidly and extensively incorporated into cerebral proteins and is therefore well suited to the assessment of Protein Synthesis Rate (PSR) in vivo by PET. A correction for the appearance of metabolites is advised for quantitative interpretation of the data. An improvement in the radiosynthesis is necessary to make 2-[18F]fluoro-L-tyrosine widely available for its application in oncology and to envisage the extended use of this tracer for the study of the protein synthesis in other physiological or pathological processes. The second chapter deals with use of molecular imprints in the PET radiochemistry. The molecularly imprinted polymers were synthetized, characterized and tested for the production of specific PET tracers and the plasma analysis of the parent metabolites. The third part of the work consisted in a development of new methods for the [18F]fluoride recovery in order to permit the labelling of different precursors through nucleophilic substitution without the evaporation step classically performed in 18-fluorine radiochemistry. The synthesis of 2-deoxy-2-[18F]fluoro-D-glucose has been used as a tool for the evaluation of the developed methods. Two strategies were considered to concentrate and recover the [18F]fluoride. The first one used ionic solid supports and protic solvents. The second one relied on the use of non ionic solid supports and non protic solvents. Both strategies led us to reach [18F]fluoride incorporation yields as high as in classical radiosyntheses with evaporation. Ionic liquids and tertiary alcohols were also evaluated in order to improve the tolerance of the [18F]fluoride nucleophilic substitution to water. The molecularly imprinted polymers and the new methods for the recovery of [18F]fluoride will now be tested for the implementation of PET tracers radiosynthesis and quality control into microchip devices.
252

Die Bedeutung von S100A4 und dessen Interaktion mit RAGE bei der Metastasierung des malignen Melanoms

Wolf, Susann 12 March 2014 (has links) (PDF)
Das S100A4-Protein ist für die Manifestierung eines metastatischen Phänotyps bei vielen Tumorarten von enormer Bedeutung. Die Aufklärung der zugrunde liegenden Mechanismen und der Interaktionspartner von S100A4 stellt daher einen vielsprechenden Forschungsansatz dar, um neue Erkenntnisse über das Verhalten von Tumorzellen während des Metastasierungsprozesses zu erhalten. Darauf aufbauend können neue Ansatzpunkte für die Therapie metastasierender Krebserkrankungen gewonnen werden. In dieser Hinsicht ist das bisher einer Behandlung kaum zugängliche maligne Melanom als besonders aggressiver und frühzeitig metastasierender Tumor ein ideales Modell zur Aufklärung der zellulären und molekularen Prozesse, über die S100A4 seine Metastasen-fördernden Wirkungen ausübt. Das Ziel der vorliegenden Arbeit war die biochemische und radiopharmakologische Charakterisierung der S100A4-RAGE-Interaktion sowie die Untersuchung der Beteiligung von S100A4 an Prozessen der Metastasierungskaskade in vitro und in vivo. Dies erforderte die Herstellung von rekombinantem S100A4-Protein und die Generierung von stabil mit S100A4-transfizierten Melanomzellen, die damit eine heraufregulierte S100A4-Proteinbiosynthese aufweisen. Die Gewinnung von rekombinantem S100A4 in biologisch funktioneller Form unter Verwendung eines prokaryotischen Expressionssystems erfolgte mit einem Reinheitsgrad von ca. 92%. Das rekombinante S100A4-Protein wurde mit dem Aktivester N-Succinimidyl-4-[18F]fluorbenzoat radioaktiv markiert und charakterisiert. Es wurde die Interaktion zwischen S100A4 bzw. 18F-markiertem S100A4 und der löslichen RAGE-Isoform sRAGE mit einer moderaten Bindungsaffinität im µM-Bereich nachgewiesen. Des Weiteren erfolgte erstmals die Analyse der radiopharmakologischen Eigenschaften von 18F-S100A4 mittels Untersuchungen zur zellulären Assoziation sowie zur metabolischen Stabilität, Bioverteilung und zu In-vivo-Interaktionen mittels Kleintier-Positronen-Emissions-Tomographie in der Ratte. Die In-vitro-Experimente wurden an Endothelzellen (HAEC) und an stabil mit RAGE-transfizierten A375-, A375-mock bzw. nicht transfizierten A375-Melanomzellen durchgeführt. Die A375-hRAGE-Zellen zeigten eine deutlich heraufregulierte RAGE-Proteinbiosynthese während die Endothelzellen eine vergleichsweise geringe intrazelluläre RAGE-Proteinkonzentration aufwiesen. Bei den Melanomzellen kann aufgrund der höheren Assoziation von 18F-S100A4 an A375-hRAGE-Zellen auf eine selektive Bindung von 18F S100A4 an RAGE-Rezeptoren auf der Zelloberfläche geschlossen werden. Die Assoziation von 18F S100A4 an Endothelzellen war bei 37°C in Gegenwart von nicht markiertem rekombinantem S100A4 signifikant vermindert, dementsprechend findet eine spezifische Interaktion von 18F-S100A4 mit Zelloberflächenrezeptoren der Endothelzellen statt. Dieses Ergebnis und die insgesamt höhere Bindung von 18F S100A4 an Endothelzellen im Vergleich zur Assoziation an Melanomzellen lassen neben RAGE noch andere Rezeptoren wie z. B. internalisierende Scavenger-Rezeptoren vermuten. Die In-vivo-Stabilitätsuntersuchungen verdeutlichen einen proteolytischen Abbau von 18F S100A4, allerdings belegen das Vorhandensein von 67% intaktem 18F-S100A4-Protein nach einer Stunde, die Stabilität von 18F-S100A4 in vivo. Die Bioverteilungs- bzw. PET-Untersuchungen zeigen eine schnelle, innerhalb weniger Minuten stattfindende hohe Akkumulation in den Nieren und verdeutlichen somit die renale Ausscheidung von 18F S100A4. Die maßgeblichen Anreicherungen in Milz, Leber, Blut, Lunge und Nebennieren lassen Interaktionen mit Oberflächenrezeptoren dieser Gewebe erkennen. Die temporäre Retention von 18F-S100A4 in der Lunge, dem Hauptsyntheseorgan von RAGE, und die verminderte 18F-S100A4-Akkumulation in Gegenwart des spezifischen RAGE-Liganden glykLDL ist ein Hinweis dafür, dass S100A4 in vivo in der Lunge an RAGE bindet. Die Aktivitätsanreicherungen in Milz, Leber und Nebenniere deuten aufgrund der geringeren RAGE-Synthese in diesen Organen auf die Interaktion von 18F-S100A4 mit anderen Zelloberflächenrezeptoren z. B. aus der Familie der Scavenger-Rezeptoren hin. Die Beteiligung von S100A4 an Metastasierungsprozessen des malignen Melanoms wurde an stabil mit S100A4-transfizierten A375-Melanomzellen, die eine Heraufregulierung der humanen bzw. murinen S100A4-Proteinbiosynthese im Vergleich zu A375-mock- (Vektor-Kontrolle) und nicht-transfizierten A375-Zellen zeigen, untersucht. Die A375-hS100A4-Zellen sezernierten zudem eine signifikant höhere S100A4-Proteinkonzentration in das umgebende Zellkulturmedium im Vergleich zu den Kontrollen. In dieser Hinsicht konnte bei den A375-hS100A4-Zellen, vermutlich aufgrund der höheren extrazellulären S100A4-Konzentration, eine gesteigerte Proliferations-, Motilitäts-, Migrations- und Invasionsrate gegenüber den A375-mock- und A375-Zellen nachgewiesen werden. In diesem Zusammenhang stehen ebenso die gesteigerte RAGE-Proteinbiosynthese und die signifikant höhere Aktivität des Transkriptionsfaktors NF-κB bei A375-Zellen nach 24-stündiger Inkubation mit Kulturmedium der A375-hS100A4-Zellen. Demnach wirkt vermutlich das extrazelluläre S100A4-Protein als autokriner bzw. parakriner Regulator von RAGE und NF κB. Die subkutane Injektion der A375- und stabil transfizierten A375-Melanomzellen in Nacktmäuse führte zur Entwicklung subkutaner Tumore an der Injektionsstelle. Bereits zwei Wochen nach der Injektion etablierten die A375-hS100A4-Zellen die signifikant größeren Tumore im Vergleich zu den A375-mS100A4-, A375-mock und A375-Zellen. Nach Injektion der Zellen in die Schwanzvene der Nacktmäuse konnte keine Entwicklung von Metastasen im Tierkörper festgestellt werden. IN DER VORLIEGENDEN ARBEIT WURDE NACHGEWIESEN: • RAGE ist ein Rezeptor für das S100A4-Protein. Allerdings gibt es eindeutige Hinweise für weitere S100A4-Zielproteine an der Zelloberfläche. • Die bedeutende Rolle von extrazellulärem S100A4 bei wichtigen zellulären Metastasierungsprozessen sowie bei der Aktivierung von Signalproteinen wie NF-κB und RAGE beim malignen Melanom. Die weitere Aufklärung der S100A4-spezifischen Signalkaskaden und Rezeptoren bei metastasierenden Tumorerkrankungen sowie die Charakterisierung von S100A4 als klinischen Parameter bei Patienten mit malignem Melanom stellen hoch interessante Aspekte in der Krebsforschung dar.
253

Synthese von Cyclooxygenase-2-Inhibitoren als Grundlage für die funktionelle Charakterisierung der COX-2-Expression mittels PET

Laube, Markus 18 February 2015 (has links) (PDF)
Eine erhöhte COX-2-Expression wird bei Krankheiten wie rheumatoider Arthritis aber auch Parkinson, Alzheimer und Krebs beobachtet. Die nichtinvasive Visualisierung und Quantifizierung der COX 2-Expression in vivo mittels Positronen-Emissions-Tomographie (PET) könnte wertvolle Beiträge zur Diagnose dieser Krankheiten liefern. Zur Nutzung der PET-Technik werden geeignete COX-2-adressierende Radiotracer benötigt, deren Entwicklung auch die Identifizierung neuer, der Radiomarkierung zugänglicher COX-2-Inhibitoren als Leitstrukturen voraussetzt. Ziel dieser Arbeit war die Synthese von selektiven, der Radiomarkierung zugänglichen COX 2-Inhibitoren und deren In-vitro-Evaluierung, um Verbindungen zu identifizieren, die für eine weitere Entwicklung zu COX-2-adressierenden Radiotracern geeignet sind. Im Rahmen dieser Arbeit wurden ausgehend von literaturbekannten COX-2-Inhibitoren zwei grundlegende Strategien verfolgt: die Derivatisierung an der Peripherie sowie der Austausch von Strukturelementen im Grundgerüst der COX-2-selektiven Inhibitoren. In dieser Arbeit wird zum einen die Synthese der Zielverbindungen (Diphenyl-substituierte Indol-, Pyrazolo[1,5-b]pyridazin-, 1,2-Dihydropyrrolo[3,2,1-hi]indol- und Pyrrolo[3,2,1-hi]indol-Derivate sowie 2-Carbaboranyl-substituierte Indol-Derivate) und deren strukturanalytische Charakterisierung vorgestellt. Es konnte die McMurry-Cyclisierung als neuer Zugang für die Synthese von Carbaboranyl-substituierten Verbindungen und 1,2-Dihydropyrrolo[3,2,1-hi]indol-Derivaten sowie die Dehydrogenierung mittels DDQ als neue Variante zur Synthese von Pyrrolo[3,2,1-hi]indol-Derivaten etabliert werden. Durch Röntgeneinkristallstrukturanalyse wurde die Molekülstruktur von sechs Zwischenverbindungen und neun Zielverbindungen aufgeklärt. Zum anderen erfolgte die Charakterisierung der Verbindungen in vitro, wobei die COX-inhibitorischen Eigenschaften mit einem Fluoreszenz-basierten, einem Enzymimmunoassay (EIA)-basierten und einem [14C]Arachidonsäure-basierten COX-Assay bestimmt und zudem viele Verbindungen hinsichtlich ihrer Redoxeigenschaften untersucht wurden. Im Besonderen die hergestellten Indol-Derivate besitzen antioxidative Eigenschaften, die bei der Untersuchung der COX inhibitorischen Eigenschaften beachtet werden müssen. Die Derivatisierung an der Peripherie der bekannten Inhibitoren führte zur Identifizierung von zwei Aminosulfonyl-substituierten Indol-Derivaten und einem Fluorethoxy-substituierten Pyrazolo[1,5 b]pyridazin-Derivat, die grundsätzlich geeignete Kandidaten für eine weitere Entwicklung zum Radiotracer darstellen. Das Fluorethoxy-substituierte Pyrazolo[1,5 b]pyridazin-Derivat wurde im Rahmen dieser Arbeit mit Fluor-18 markiert und die initiale Charakterisierung des Radiotracers in vitro durchgeführt. Der Austausch von Strukturelementen im Grundgerüst der literaturbekannten COX-2-Inhibitoren mit voluminöseren Gruppen führte zum einen bei Austausch eines Phenylrings gegen einen Carbaboranyl-Cluster zum Verlust der COX-inhibitorischen Eigenschaften, was eine weitere Entwicklung dieser Verbindungen zum Radiotracer ausschließt. Zum anderen wurde ausgehend von 2,3-Diphenyl-1H-indol-Derivaten die bicyclische auf eine tricyclische Kernstruktur vergrößert. Dies lieferte hoch affine und selektive COX-2-Inhibitoren. Unter den hergestellten Verbindungen wurden ein 1,2-Dihydropyrrolo[3,2,1-hi]indol- und drei Pyrrolo[3,2,1-hi]indol-Derivate als vielversprechende Kandidaten für die weitere Entwicklung zum Radiotracer identifiziert.
254

Die Bedeutung von S100A4 und dessen Interaktion mit RAGE bei der Metastasierung des malignen Melanoms

Wolf, Susann 03 March 2014 (has links)
Das S100A4-Protein ist für die Manifestierung eines metastatischen Phänotyps bei vielen Tumorarten von enormer Bedeutung. Die Aufklärung der zugrunde liegenden Mechanismen und der Interaktionspartner von S100A4 stellt daher einen vielsprechenden Forschungsansatz dar, um neue Erkenntnisse über das Verhalten von Tumorzellen während des Metastasierungsprozesses zu erhalten. Darauf aufbauend können neue Ansatzpunkte für die Therapie metastasierender Krebserkrankungen gewonnen werden. In dieser Hinsicht ist das bisher einer Behandlung kaum zugängliche maligne Melanom als besonders aggressiver und frühzeitig metastasierender Tumor ein ideales Modell zur Aufklärung der zellulären und molekularen Prozesse, über die S100A4 seine Metastasen-fördernden Wirkungen ausübt. Das Ziel der vorliegenden Arbeit war die biochemische und radiopharmakologische Charakterisierung der S100A4-RAGE-Interaktion sowie die Untersuchung der Beteiligung von S100A4 an Prozessen der Metastasierungskaskade in vitro und in vivo. Dies erforderte die Herstellung von rekombinantem S100A4-Protein und die Generierung von stabil mit S100A4-transfizierten Melanomzellen, die damit eine heraufregulierte S100A4-Proteinbiosynthese aufweisen. Die Gewinnung von rekombinantem S100A4 in biologisch funktioneller Form unter Verwendung eines prokaryotischen Expressionssystems erfolgte mit einem Reinheitsgrad von ca. 92%. Das rekombinante S100A4-Protein wurde mit dem Aktivester N-Succinimidyl-4-[18F]fluorbenzoat radioaktiv markiert und charakterisiert. Es wurde die Interaktion zwischen S100A4 bzw. 18F-markiertem S100A4 und der löslichen RAGE-Isoform sRAGE mit einer moderaten Bindungsaffinität im µM-Bereich nachgewiesen. Des Weiteren erfolgte erstmals die Analyse der radiopharmakologischen Eigenschaften von 18F-S100A4 mittels Untersuchungen zur zellulären Assoziation sowie zur metabolischen Stabilität, Bioverteilung und zu In-vivo-Interaktionen mittels Kleintier-Positronen-Emissions-Tomographie in der Ratte. Die In-vitro-Experimente wurden an Endothelzellen (HAEC) und an stabil mit RAGE-transfizierten A375-, A375-mock bzw. nicht transfizierten A375-Melanomzellen durchgeführt. Die A375-hRAGE-Zellen zeigten eine deutlich heraufregulierte RAGE-Proteinbiosynthese während die Endothelzellen eine vergleichsweise geringe intrazelluläre RAGE-Proteinkonzentration aufwiesen. Bei den Melanomzellen kann aufgrund der höheren Assoziation von 18F-S100A4 an A375-hRAGE-Zellen auf eine selektive Bindung von 18F S100A4 an RAGE-Rezeptoren auf der Zelloberfläche geschlossen werden. Die Assoziation von 18F S100A4 an Endothelzellen war bei 37°C in Gegenwart von nicht markiertem rekombinantem S100A4 signifikant vermindert, dementsprechend findet eine spezifische Interaktion von 18F-S100A4 mit Zelloberflächenrezeptoren der Endothelzellen statt. Dieses Ergebnis und die insgesamt höhere Bindung von 18F S100A4 an Endothelzellen im Vergleich zur Assoziation an Melanomzellen lassen neben RAGE noch andere Rezeptoren wie z. B. internalisierende Scavenger-Rezeptoren vermuten. Die In-vivo-Stabilitätsuntersuchungen verdeutlichen einen proteolytischen Abbau von 18F S100A4, allerdings belegen das Vorhandensein von 67% intaktem 18F-S100A4-Protein nach einer Stunde, die Stabilität von 18F-S100A4 in vivo. Die Bioverteilungs- bzw. PET-Untersuchungen zeigen eine schnelle, innerhalb weniger Minuten stattfindende hohe Akkumulation in den Nieren und verdeutlichen somit die renale Ausscheidung von 18F S100A4. Die maßgeblichen Anreicherungen in Milz, Leber, Blut, Lunge und Nebennieren lassen Interaktionen mit Oberflächenrezeptoren dieser Gewebe erkennen. Die temporäre Retention von 18F-S100A4 in der Lunge, dem Hauptsyntheseorgan von RAGE, und die verminderte 18F-S100A4-Akkumulation in Gegenwart des spezifischen RAGE-Liganden glykLDL ist ein Hinweis dafür, dass S100A4 in vivo in der Lunge an RAGE bindet. Die Aktivitätsanreicherungen in Milz, Leber und Nebenniere deuten aufgrund der geringeren RAGE-Synthese in diesen Organen auf die Interaktion von 18F-S100A4 mit anderen Zelloberflächenrezeptoren z. B. aus der Familie der Scavenger-Rezeptoren hin. Die Beteiligung von S100A4 an Metastasierungsprozessen des malignen Melanoms wurde an stabil mit S100A4-transfizierten A375-Melanomzellen, die eine Heraufregulierung der humanen bzw. murinen S100A4-Proteinbiosynthese im Vergleich zu A375-mock- (Vektor-Kontrolle) und nicht-transfizierten A375-Zellen zeigen, untersucht. Die A375-hS100A4-Zellen sezernierten zudem eine signifikant höhere S100A4-Proteinkonzentration in das umgebende Zellkulturmedium im Vergleich zu den Kontrollen. In dieser Hinsicht konnte bei den A375-hS100A4-Zellen, vermutlich aufgrund der höheren extrazellulären S100A4-Konzentration, eine gesteigerte Proliferations-, Motilitäts-, Migrations- und Invasionsrate gegenüber den A375-mock- und A375-Zellen nachgewiesen werden. In diesem Zusammenhang stehen ebenso die gesteigerte RAGE-Proteinbiosynthese und die signifikant höhere Aktivität des Transkriptionsfaktors NF-κB bei A375-Zellen nach 24-stündiger Inkubation mit Kulturmedium der A375-hS100A4-Zellen. Demnach wirkt vermutlich das extrazelluläre S100A4-Protein als autokriner bzw. parakriner Regulator von RAGE und NF κB. Die subkutane Injektion der A375- und stabil transfizierten A375-Melanomzellen in Nacktmäuse führte zur Entwicklung subkutaner Tumore an der Injektionsstelle. Bereits zwei Wochen nach der Injektion etablierten die A375-hS100A4-Zellen die signifikant größeren Tumore im Vergleich zu den A375-mS100A4-, A375-mock und A375-Zellen. Nach Injektion der Zellen in die Schwanzvene der Nacktmäuse konnte keine Entwicklung von Metastasen im Tierkörper festgestellt werden. IN DER VORLIEGENDEN ARBEIT WURDE NACHGEWIESEN: • RAGE ist ein Rezeptor für das S100A4-Protein. Allerdings gibt es eindeutige Hinweise für weitere S100A4-Zielproteine an der Zelloberfläche. • Die bedeutende Rolle von extrazellulärem S100A4 bei wichtigen zellulären Metastasierungsprozessen sowie bei der Aktivierung von Signalproteinen wie NF-κB und RAGE beim malignen Melanom. Die weitere Aufklärung der S100A4-spezifischen Signalkaskaden und Rezeptoren bei metastasierenden Tumorerkrankungen sowie die Charakterisierung von S100A4 als klinischen Parameter bei Patienten mit malignem Melanom stellen hoch interessante Aspekte in der Krebsforschung dar.
255

Synthese von Cyclooxygenase-2-Inhibitoren als Grundlage für die funktionelle Charakterisierung der COX-2-Expression mittels PET

Laube, Markus 16 December 2014 (has links)
Eine erhöhte COX-2-Expression wird bei Krankheiten wie rheumatoider Arthritis aber auch Parkinson, Alzheimer und Krebs beobachtet. Die nichtinvasive Visualisierung und Quantifizierung der COX 2-Expression in vivo mittels Positronen-Emissions-Tomographie (PET) könnte wertvolle Beiträge zur Diagnose dieser Krankheiten liefern. Zur Nutzung der PET-Technik werden geeignete COX-2-adressierende Radiotracer benötigt, deren Entwicklung auch die Identifizierung neuer, der Radiomarkierung zugänglicher COX-2-Inhibitoren als Leitstrukturen voraussetzt. Ziel dieser Arbeit war die Synthese von selektiven, der Radiomarkierung zugänglichen COX 2-Inhibitoren und deren In-vitro-Evaluierung, um Verbindungen zu identifizieren, die für eine weitere Entwicklung zu COX-2-adressierenden Radiotracern geeignet sind. Im Rahmen dieser Arbeit wurden ausgehend von literaturbekannten COX-2-Inhibitoren zwei grundlegende Strategien verfolgt: die Derivatisierung an der Peripherie sowie der Austausch von Strukturelementen im Grundgerüst der COX-2-selektiven Inhibitoren. In dieser Arbeit wird zum einen die Synthese der Zielverbindungen (Diphenyl-substituierte Indol-, Pyrazolo[1,5-b]pyridazin-, 1,2-Dihydropyrrolo[3,2,1-hi]indol- und Pyrrolo[3,2,1-hi]indol-Derivate sowie 2-Carbaboranyl-substituierte Indol-Derivate) und deren strukturanalytische Charakterisierung vorgestellt. Es konnte die McMurry-Cyclisierung als neuer Zugang für die Synthese von Carbaboranyl-substituierten Verbindungen und 1,2-Dihydropyrrolo[3,2,1-hi]indol-Derivaten sowie die Dehydrogenierung mittels DDQ als neue Variante zur Synthese von Pyrrolo[3,2,1-hi]indol-Derivaten etabliert werden. Durch Röntgeneinkristallstrukturanalyse wurde die Molekülstruktur von sechs Zwischenverbindungen und neun Zielverbindungen aufgeklärt. Zum anderen erfolgte die Charakterisierung der Verbindungen in vitro, wobei die COX-inhibitorischen Eigenschaften mit einem Fluoreszenz-basierten, einem Enzymimmunoassay (EIA)-basierten und einem [14C]Arachidonsäure-basierten COX-Assay bestimmt und zudem viele Verbindungen hinsichtlich ihrer Redoxeigenschaften untersucht wurden. Im Besonderen die hergestellten Indol-Derivate besitzen antioxidative Eigenschaften, die bei der Untersuchung der COX inhibitorischen Eigenschaften beachtet werden müssen. Die Derivatisierung an der Peripherie der bekannten Inhibitoren führte zur Identifizierung von zwei Aminosulfonyl-substituierten Indol-Derivaten und einem Fluorethoxy-substituierten Pyrazolo[1,5 b]pyridazin-Derivat, die grundsätzlich geeignete Kandidaten für eine weitere Entwicklung zum Radiotracer darstellen. Das Fluorethoxy-substituierte Pyrazolo[1,5 b]pyridazin-Derivat wurde im Rahmen dieser Arbeit mit Fluor-18 markiert und die initiale Charakterisierung des Radiotracers in vitro durchgeführt. Der Austausch von Strukturelementen im Grundgerüst der literaturbekannten COX-2-Inhibitoren mit voluminöseren Gruppen führte zum einen bei Austausch eines Phenylrings gegen einen Carbaboranyl-Cluster zum Verlust der COX-inhibitorischen Eigenschaften, was eine weitere Entwicklung dieser Verbindungen zum Radiotracer ausschließt. Zum anderen wurde ausgehend von 2,3-Diphenyl-1H-indol-Derivaten die bicyclische auf eine tricyclische Kernstruktur vergrößert. Dies lieferte hoch affine und selektive COX-2-Inhibitoren. Unter den hergestellten Verbindungen wurden ein 1,2-Dihydropyrrolo[3,2,1-hi]indol- und drei Pyrrolo[3,2,1-hi]indol-Derivate als vielversprechende Kandidaten für die weitere Entwicklung zum Radiotracer identifiziert.
256

Fluor-18-markierte selektive Cyclooxygenase-2-Inhibitoren: Entwicklung von zwei potenten Tracern mit tricyclischer Kernstruktur und Beeinflussung der metabolischen Stabilität von Pyrazol-basierten Radiotracern

Gassner, Cemena 28 February 2024 (has links)
Die funktionelle Bildgebung der Expression der Cyclooxygenase-2 (COX-2) stellt aufgrund ihrer bedeutsamen Rolle bei pathophysiologischen Prozessen, insbesondere bei der Tumorprogression, einen wichtigen Forschungsansatz dar. Als nichtinvasive, bildgebende Methode bietet die PET (Positronen-Emissions-Tomographie) unter Ausnutzung von radiomarkierten Molekülen eine Möglichkeit, zeitlich und räumlich molekulare Prozesse abzubilden und zu verfolgen. Das Radionuklid Fluor-18 wird wegen seiner nahezu optimalen kernphysikalischen und chemischen Eigenschaften für die PET verwendet. Aufgrund der hohen Anforderungen, die an einen Radiotracer für die Bildgebung mittels PET gestellt werden, ist es bisher nicht gelungen, eine geeignete radiomarkierte Verbindung für die Visualisierung der COX-2-Expression in vivo zu entwickeln. Insbesondere die Spezifität, Selektivität und Affinität sowie die metabolische Stabilität eines Radiotracers sind wesentliche Parameter, die über den Erfolg der Verbindung in vivo entscheiden. Basierend auf den bisherigen Erkenntnissen bei der Entwicklung radiomarkierter selektiver COX-2-Inhibitoren verfolgte diese Arbeit zwei Strategien der Radiotracerentwicklungen. Als potente Zielverbindungen wurden aus der Stoffklasse mit tricyclischer Kernstruktur das Pyrrolo[3,2,1-hi]indol PI (1-(4-Fluorphenyl)-2-(4-methansulfonyl)phenyl-pyrrolo[3,2,1-hi]indol) und das 1,2-Dihydropyrrolo[3,2,1-hi]indol DHPI (5-Fluorphenyl-4-(4-methansulfonyl)phenyl-1,2-dihydropyrrolo[3,2,1-hi]indol) ausgewählt. Die Radiosynthese von [18F]PI gelang in einer manuellen Cu(II)-vermittelten 18F-Fluorierung ausgehend vom entsprechenden Arylboronsäurepinakolester. Die Radiosynthese von [18F]DHPI erfolgte automatisiert über eine Zwei-Stufen/ Ein-Topf-Reaktion bestehend aus einer 18F-Fluorierung und anschließender intramolekularer McMurry-Reaktion. Der Radiotracer [18F]DHPI wurde umfassend hinsichtlich seiner radiopharmakologischen Eigenschaften untersucht. Trotz seiner hohen Stabilität in vivo ist insbesondere die hohe Lipophilie von [18F]DHPI hinderlich für eine spezifische Anreicherung im Tumorgewebe. Im zweiten Teil der Arbeit wurde die chemische Struktur eines potenten, jedoch metabolisch unzureichend stabilen Radiotracers mit 1,5-Diaryl-substituierter Pyrazol-Kernstruktur und [18F]Fluormethylseitenkette (basierend auf Celecoxib) durch Seitenkettenverlängerung und Deuterierung verändert, sodass eine Beeinflussung der Stabilität erfolgen sollte. Es wurden die entsprechenden Referenzverbindungen und Präkursoren hergestellt. Die Radiosynthesen der drei Zielverbindungen erfolgten automatisiert in einer nucleophilen aliphatischen Substitutionsreaktion. Die drei Radiotracer wurden in vitro und in vivo hinsichtlich ihrer Stabilität und der zugrundeliegenden Metabolisierungsprozesse untersucht. Dabei zeigte insbesondere die Methode der Deuterierung ein hohes Potential für die Verbesserung der metabolischen Stabilität unter Beibehaltung der Affinität zum Zielenzym.
257

Développement et radiosynthèse de ligands du récepteur tyrosine kinase neurotrophique type 2 (TrkB) marqués aux carbone-11 et fluor-18 pour l’imagerie cérébrale par tomographie d’émission de positons

Bernard-Gauthier, Vadim 08 1900 (has links)
Ce mémoire présente mes travaux ayant menés au développement d’une première génération de radioligands marqués au fluor-18 (t1/2 = 110 min) et au carbone-11 (t1/2 = 20.4 min) destinés à l’imagerie cérébrale in vivo du récepteur tyrosine kinase neurotrophique de type 2 (TrkB) en tomographie par émission de positons (TEP). Ces travaux reposent sur l’identification récente de ligands de TrkB non peptidiques à hautes affinités dérivés du 7,8-dihydroxyflavone. La synthèse d’une série de dérivés du 7,8-dihydroxyflavone non-radioactifs de même que des précuseurs à l’incorporation du fluro-18 et du carbone-11 a d’abord été effectuée. Partant des précurseurs adéquats synthétisés, la radiosynthèse de deux radioligands, l’un marqué au fluor-18 et l’autre au carbone-11, a été développée. Ces radiosynthèses reposent respectivement sur une 18F-radiofluorination nucléophile aromatique nouvelle et hautement efficace et sur une 11C-méthylation N-sélective. Les radiotraceurs de TrkB ainsi obtenus ont ensuite été évalués in vitro en autoradiographie et in vivo en tant que traceurs TEP dans des rats. L’évaluation des propriétés physico-chimique de même que de la stabilité in vitro des radiotraceurs sont présentées. Partant d’une série d’analogues cristallisés de ces flavones synthétiques, une étude de relation structure-activité a été menée. La combinaison de cette étude, de pair avec l’évaluation in vivo de la première génération de radiotraceurs de TrkB a aussi permis d’investiguer les pharmacophores nécessaires à l’affinité de ces ligands de même que d’identifier des fragments structurels associés au métabolisme des radiotraceurs. La radiosynthèse d’un troisième radioligand de TrkB et son évaluation TEP in vivo de même que la mise en lumière des modifications structurelles utiles au développement d’une seconde génération de radioligands de TrkB avec des propriétés optimisées pour fin d’imagerie TEP sont aussi détaillés. / This thesis describes my contribution leading to the development of the first-generation positron emission tomography (PET) radioligands labeled with fluorine-18 (t1/2 = 110 min) or carbon-11 (t1/2 = 20.4 min) for the in vivo brain imaging of tropomyosin-related kinase B (TrkB). This research follows from the recent discovery of non-peptidic, high-affinity TrkB ligands derived from 7,8-dihydroxyflavone. The synthesis of non-radioactive 7,8-dihydroxyflavone derivatives and radiolabeling precursors amenable to fluorine-18 and carbon-11 incorporation was performed. Two synthesized compounds have been brought forward as precursors for radiolabeling with either fluorine-18 or carbon-11. Radiosynthesis involved either a novel nucleophilic aromatic subsitution with [18F]fluoride, or N-methylation with [11C]methyl iodide or [11C] methyl triflate. The resulting radiotracers were assessed in vitro by autoradiography and in vivo by PET scans of rats. The physicochemical properties and serum stability of these tracers were also evaluated. X-ray crystal structures of a series of synthetic flavone analogues were used as basis for structure-activity relationship (SAR) analysis. In combination with the above in vivo PET evaluation of these compounds, certain pharmacophores were shown essential for ligand binding affinity. In addition, some structural fragments were associated with in vivo ligand metabolism. The development and radiosynthesis of a third TrkB radiotracer, along with its in vivo PET evaluation and structural analysis, is also described here. In all, better understanding of these tracers have led to the design of potential second-generation TrkB ligands with more optimal properties as PET radiotracers.
258

18F-markierte S100-Proteine als potentielle Radioliganden für die funktionelle Charakterisierung des Rezeptors für advanced glycation endproducts (RAGE) in vitro und in vivo

Hoppmann, Susan 06 October 2009 (has links) (PDF)
Die Interaktion von S100-Proteinen mit dem Rezeptor für advanced glycation endproducts (RAGE) wird als hoch relevant bei der Entstehung, Manifestation und Progression verschiedener entzündlicher Erkrankungen sowie bei der Tumorigenese gewertet. Das tiefergehende Verständnis der Interaktion von S100-Proteinen mit RAGE in vivo stellt eine wissenschaftliche Herausforderung dar und ist ein Ansatz für therapeutische Interventionen. Darüber hinaus stellen Untersuchungen zum Metabolismus von extrazellulär zirkulierenden S100-Proteinen in vivo einen vielversprechenden Forschungsansatz zur Analyse von S100-Protein-assoziierten Erkrankungen dar. Die einzigartigen Eigenschaften der Positronen-Emissions-Tomographie (PET) als nicht-invasives bildgebendes Verfahren erlauben die Darstellung und quantitative Erfassung biochemischer Prozesse mit der Möglichkeit zelluläre und molekulare Reaktionswege aufzuzeigen sowie in vivo-Mechanismen von Krankheiten im Kontext eines physiologischen Umfeldes darzulegen. Ziel der vorliegenden Arbeit war es, Fluor-18-markierte S100-Proteine (18F-S100) herzustellen, diese biochemisch, radiochemisch und radiopharmakologisch zu charakterisieren und deren Metabolismus und Interaktion mit RAGE in vivo mittels Kleintier-PET am Tiermodell zu untersuchen. Es wurden die mit RAGE interagierenden S100-Proteine S100A1, S100A12 und S100B in biologisch funktioneller Form hergestellt. Dazu wurden die entsprechenden S100-Gene in den prokaryotischen Expressionsvektor pGEX-6P-1 kloniert. Mit diesen Konstrukten wurden E. coli-Zellen transformiert, aus denen nachfolgend die S100-Proteine isoliert und gereinigt werden konnten. Es konnte eine Reinigung unter nativen, milden Bedingungen etabliert werden, die es ermöglichte, S100A1, S100A12 und S100B in biologisch aktiver Form und in hohen Reinheitsgraden (> 95%) für die nachfolgenden Experimente bereitzustellen. Diese S100-Proteine wurden über den 18F-tragenden Aktivester N-Succinimidyl-4-[18F]fluorbenzoesäure ([18F]SFB) radioaktiv markiert und charakterisiert. Dabei konnte sichergestellt werden, dass die 18F-S100-Proteine in vitro und in vivo stabil sind. Weiterhin konnte nachgewiesen werden, dass die radioaktive Markierung keine Beeinträchtigung auf die biologische Funktionalität der S100-Proteine hat. Dies wurde anhand von sRAGE-Bindungsuntersuchungen sowie Zell-Interaktionsuntersuchungen an konfluenten Endothelzellen (HAEC) und an zu Makrophagen differenzierten THP-1-Zellen (THP-1-Makrophagen) verifiziert. Für die Untersuchung der RAGE-Bindung war die Produktion des löslichen sRAGE bzw. die Generation von flRAGE-berexprimierenden Zellen erforderlich. Beide Konstrukte wurden in geeigneten Zellsystemen exprimiert und das sRAGE-Protein wurde in biologisch aktiver Form synthetisiert und gereinigt (Reinheitsgrad > 97%). Die 18F-S100-Bindung an THP-1-Makrophagen und HAEC wurde in Gegenwart von glykierten LDL (glykLDL) sowie sRAGE signifikant inhibiert, was auf eine RAGE-Interaktion hinweist. Weiterhin konnten durch den Einsatz von Scavenger-Rezeptor-Liganden, wie z. B. Maleinanhydrid-modifiziertes BSA (malBSA) bzw. von Lektinen inhibierende Effekte erzielt werden. Dies ist ein Indiz für die 18F-S100-Interaktion mit Scavenger-Rezeptoren und Glykokonjugaten an der Zelloberfläche. Durch die Untersuchungen mittels konfokaler Laserscanning-Mikroskopie an THP-1-Makrophagen wurde eine Zellaufnahme des Fluoreszein-markierten S100A12 festgestellt. Weiterhin konnten Kolokalisationen mit Lektinen detektiert werden. Das metabolische Schicksal extrazellulär zirkulierender 18F-S100-Proteine in vivo wurde mit Hilfe dynamischer PET-Untersuchungen bzw. anhand von Bioverteilungs-Untersuchungen in männlichen Wistar-Ratten analysiert. Die Hauptakkumulation der Radioaktivität wurde in der Leber und in den Nieren detektiert. In diesen Organen findet der Metabolismus bzw. die glomeruläre Filtration der 18F-S100-Proteine statt. In den Untersuchungen zur Genexpression mittels Echtzeit-PCR sowie im immunchemischen Proteinnachweis am Western Blot wurde eine hohe Expression und Proteinbiosynthese des RAGE in der Lunge ermittelt. Die Lunge eignet sich daher als „Referenz“-Organ für eine funktionelle in vivo-Charakterisierung von RAGE mit 18FS100-Proteinen. Bei den durchgeführten PET-Untersuchungen konnte eine temporäre 18F-S100-Interaktion mit dem Lungengewebe festgestellt werden. Die Retention des 18FS100A12 in der Lunge wurde in Gegenwart von sRAGE inhibiert. Dies ist ein Hinweis dafür, dass 18F-S100-Proteine auch in vivo an RAGE binden können. Die Radioaktivitäts-Akkumulation in den Organen Leber und Milz, die eine Vielzahl von sessilen Makrophagen aufweisen, wurde durch die Applikation von malBSA inhibiert. Dies ist ein Indiz dafür, dass 18F-S100-Proteine in vivo mit Scavenger-Rezeptoren interagieren können. Die vorliegende Arbeit liefert deutliche Hinweise darauf, dass RAGE nicht der alleinige Rezeptor für 18F-S100-Proteine ist. Der Einsatz von 18F-S100-Proteinen als experimentelles Werkzeug in dynamischen PET-Untersuchungen birgt das Potential einer Charakterisierung von S100-Protein-assoziierten, pathophysiologischen Prozessen. / Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 > S100A1 > S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments.
259

Développement et radiosynthèse de ligands du récepteur tyrosine kinase neurotrophique type 2 (TrkB) marqués aux carbone-11 et fluor-18 pour l’imagerie cérébrale par tomographie d’émission de positons

Bernard-Gauthier, Vadim 08 1900 (has links)
Ce mémoire présente mes travaux ayant menés au développement d’une première génération de radioligands marqués au fluor-18 (t1/2 = 110 min) et au carbone-11 (t1/2 = 20.4 min) destinés à l’imagerie cérébrale in vivo du récepteur tyrosine kinase neurotrophique de type 2 (TrkB) en tomographie par émission de positons (TEP). Ces travaux reposent sur l’identification récente de ligands de TrkB non peptidiques à hautes affinités dérivés du 7,8-dihydroxyflavone. La synthèse d’une série de dérivés du 7,8-dihydroxyflavone non-radioactifs de même que des précuseurs à l’incorporation du fluro-18 et du carbone-11 a d’abord été effectuée. Partant des précurseurs adéquats synthétisés, la radiosynthèse de deux radioligands, l’un marqué au fluor-18 et l’autre au carbone-11, a été développée. Ces radiosynthèses reposent respectivement sur une 18F-radiofluorination nucléophile aromatique nouvelle et hautement efficace et sur une 11C-méthylation N-sélective. Les radiotraceurs de TrkB ainsi obtenus ont ensuite été évalués in vitro en autoradiographie et in vivo en tant que traceurs TEP dans des rats. L’évaluation des propriétés physico-chimique de même que de la stabilité in vitro des radiotraceurs sont présentées. Partant d’une série d’analogues cristallisés de ces flavones synthétiques, une étude de relation structure-activité a été menée. La combinaison de cette étude, de pair avec l’évaluation in vivo de la première génération de radiotraceurs de TrkB a aussi permis d’investiguer les pharmacophores nécessaires à l’affinité de ces ligands de même que d’identifier des fragments structurels associés au métabolisme des radiotraceurs. La radiosynthèse d’un troisième radioligand de TrkB et son évaluation TEP in vivo de même que la mise en lumière des modifications structurelles utiles au développement d’une seconde génération de radioligands de TrkB avec des propriétés optimisées pour fin d’imagerie TEP sont aussi détaillés. / This thesis describes my contribution leading to the development of the first-generation positron emission tomography (PET) radioligands labeled with fluorine-18 (t1/2 = 110 min) or carbon-11 (t1/2 = 20.4 min) for the in vivo brain imaging of tropomyosin-related kinase B (TrkB). This research follows from the recent discovery of non-peptidic, high-affinity TrkB ligands derived from 7,8-dihydroxyflavone. The synthesis of non-radioactive 7,8-dihydroxyflavone derivatives and radiolabeling precursors amenable to fluorine-18 and carbon-11 incorporation was performed. Two synthesized compounds have been brought forward as precursors for radiolabeling with either fluorine-18 or carbon-11. Radiosynthesis involved either a novel nucleophilic aromatic subsitution with [18F]fluoride, or N-methylation with [11C]methyl iodide or [11C] methyl triflate. The resulting radiotracers were assessed in vitro by autoradiography and in vivo by PET scans of rats. The physicochemical properties and serum stability of these tracers were also evaluated. X-ray crystal structures of a series of synthetic flavone analogues were used as basis for structure-activity relationship (SAR) analysis. In combination with the above in vivo PET evaluation of these compounds, certain pharmacophores were shown essential for ligand binding affinity. In addition, some structural fragments were associated with in vivo ligand metabolism. The development and radiosynthesis of a third TrkB radiotracer, along with its in vivo PET evaluation and structural analysis, is also described here. In all, better understanding of these tracers have led to the design of potential second-generation TrkB ligands with more optimal properties as PET radiotracers.
260

18F-markierte S100-Proteine als potentielle Radioliganden für die funktionelle Charakterisierung des Rezeptors für advanced glycation endproducts (RAGE) in vitro und in vivo

Hoppmann, Susan 11 September 2009 (has links)
Die Interaktion von S100-Proteinen mit dem Rezeptor für advanced glycation endproducts (RAGE) wird als hoch relevant bei der Entstehung, Manifestation und Progression verschiedener entzündlicher Erkrankungen sowie bei der Tumorigenese gewertet. Das tiefergehende Verständnis der Interaktion von S100-Proteinen mit RAGE in vivo stellt eine wissenschaftliche Herausforderung dar und ist ein Ansatz für therapeutische Interventionen. Darüber hinaus stellen Untersuchungen zum Metabolismus von extrazellulär zirkulierenden S100-Proteinen in vivo einen vielversprechenden Forschungsansatz zur Analyse von S100-Protein-assoziierten Erkrankungen dar. Die einzigartigen Eigenschaften der Positronen-Emissions-Tomographie (PET) als nicht-invasives bildgebendes Verfahren erlauben die Darstellung und quantitative Erfassung biochemischer Prozesse mit der Möglichkeit zelluläre und molekulare Reaktionswege aufzuzeigen sowie in vivo-Mechanismen von Krankheiten im Kontext eines physiologischen Umfeldes darzulegen. Ziel der vorliegenden Arbeit war es, Fluor-18-markierte S100-Proteine (18F-S100) herzustellen, diese biochemisch, radiochemisch und radiopharmakologisch zu charakterisieren und deren Metabolismus und Interaktion mit RAGE in vivo mittels Kleintier-PET am Tiermodell zu untersuchen. Es wurden die mit RAGE interagierenden S100-Proteine S100A1, S100A12 und S100B in biologisch funktioneller Form hergestellt. Dazu wurden die entsprechenden S100-Gene in den prokaryotischen Expressionsvektor pGEX-6P-1 kloniert. Mit diesen Konstrukten wurden E. coli-Zellen transformiert, aus denen nachfolgend die S100-Proteine isoliert und gereinigt werden konnten. Es konnte eine Reinigung unter nativen, milden Bedingungen etabliert werden, die es ermöglichte, S100A1, S100A12 und S100B in biologisch aktiver Form und in hohen Reinheitsgraden (> 95%) für die nachfolgenden Experimente bereitzustellen. Diese S100-Proteine wurden über den 18F-tragenden Aktivester N-Succinimidyl-4-[18F]fluorbenzoesäure ([18F]SFB) radioaktiv markiert und charakterisiert. Dabei konnte sichergestellt werden, dass die 18F-S100-Proteine in vitro und in vivo stabil sind. Weiterhin konnte nachgewiesen werden, dass die radioaktive Markierung keine Beeinträchtigung auf die biologische Funktionalität der S100-Proteine hat. Dies wurde anhand von sRAGE-Bindungsuntersuchungen sowie Zell-Interaktionsuntersuchungen an konfluenten Endothelzellen (HAEC) und an zu Makrophagen differenzierten THP-1-Zellen (THP-1-Makrophagen) verifiziert. Für die Untersuchung der RAGE-Bindung war die Produktion des löslichen sRAGE bzw. die Generation von flRAGE-berexprimierenden Zellen erforderlich. Beide Konstrukte wurden in geeigneten Zellsystemen exprimiert und das sRAGE-Protein wurde in biologisch aktiver Form synthetisiert und gereinigt (Reinheitsgrad > 97%). Die 18F-S100-Bindung an THP-1-Makrophagen und HAEC wurde in Gegenwart von glykierten LDL (glykLDL) sowie sRAGE signifikant inhibiert, was auf eine RAGE-Interaktion hinweist. Weiterhin konnten durch den Einsatz von Scavenger-Rezeptor-Liganden, wie z. B. Maleinanhydrid-modifiziertes BSA (malBSA) bzw. von Lektinen inhibierende Effekte erzielt werden. Dies ist ein Indiz für die 18F-S100-Interaktion mit Scavenger-Rezeptoren und Glykokonjugaten an der Zelloberfläche. Durch die Untersuchungen mittels konfokaler Laserscanning-Mikroskopie an THP-1-Makrophagen wurde eine Zellaufnahme des Fluoreszein-markierten S100A12 festgestellt. Weiterhin konnten Kolokalisationen mit Lektinen detektiert werden. Das metabolische Schicksal extrazellulär zirkulierender 18F-S100-Proteine in vivo wurde mit Hilfe dynamischer PET-Untersuchungen bzw. anhand von Bioverteilungs-Untersuchungen in männlichen Wistar-Ratten analysiert. Die Hauptakkumulation der Radioaktivität wurde in der Leber und in den Nieren detektiert. In diesen Organen findet der Metabolismus bzw. die glomeruläre Filtration der 18F-S100-Proteine statt. In den Untersuchungen zur Genexpression mittels Echtzeit-PCR sowie im immunchemischen Proteinnachweis am Western Blot wurde eine hohe Expression und Proteinbiosynthese des RAGE in der Lunge ermittelt. Die Lunge eignet sich daher als „Referenz“-Organ für eine funktionelle in vivo-Charakterisierung von RAGE mit 18FS100-Proteinen. Bei den durchgeführten PET-Untersuchungen konnte eine temporäre 18F-S100-Interaktion mit dem Lungengewebe festgestellt werden. Die Retention des 18FS100A12 in der Lunge wurde in Gegenwart von sRAGE inhibiert. Dies ist ein Hinweis dafür, dass 18F-S100-Proteine auch in vivo an RAGE binden können. Die Radioaktivitäts-Akkumulation in den Organen Leber und Milz, die eine Vielzahl von sessilen Makrophagen aufweisen, wurde durch die Applikation von malBSA inhibiert. Dies ist ein Indiz dafür, dass 18F-S100-Proteine in vivo mit Scavenger-Rezeptoren interagieren können. Die vorliegende Arbeit liefert deutliche Hinweise darauf, dass RAGE nicht der alleinige Rezeptor für 18F-S100-Proteine ist. Der Einsatz von 18F-S100-Proteinen als experimentelles Werkzeug in dynamischen PET-Untersuchungen birgt das Potential einer Charakterisierung von S100-Protein-assoziierten, pathophysiologischen Prozessen. / Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 > S100A1 > S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments.

Page generated in 0.0265 seconds