• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pulmonary Drug Delivery via Reverse Perfluorocarbon Emulsions: A Novel Method for Bacterial Respiratory Infections and Acute Respiratory Failure

Nelson, Diane L. 01 May 2018 (has links)
Inhaled drug delivery is currently the gold standard for treating many respiratory diseases. However, improved treatments are needed for lung diseases like Cystic Fibrosis (CF) and Acute Respiratory Distress Syndrome (ARDS), where mucus or fluid build-up in the lung limits ventilation and, thus, delivery of inhaled drugs. Delivery is most needed in the diseased or damaged regions of the lung, but if an area is not ventilated, inhaled drug will simply not reach it. To overcome this, this research proposes delivering drugs to the lungs within a perfluorocarbon (PFC) liquid. The lungs will be filled with a reverse emulsion containing a disperse phase of aqueous drugs within the bulk PFC and then ventilated. The PFC functions as both a respiratory medium, providing gas exchange, and as a delivery vehicle, providing a more uniform deposition of drugs. After treatment, the highly volatile PFCs are exhaled, returning the patient to normal respiration. This technique improves upon current therapies as follows. First, drugs are delivered directly to where they are needed, yielding higher concentrations in the lung and lower systemic concentrations. Second, PFCs are ideal for washing out lung exudate and mucus. The low surface tension and high density of PFC allows it to easily penetrate plugged or collapsed alveoli, detach infected mucus from the airway walls, and force these fluids to the top of the lungs where they can then be removed via suction. Mucus and exudate removal should allow drugs to penetrate previously plugged airways during emulsion delivery and subsequent treatment with inhaled therapies. Thus, drug delivery via emulsion would be used as a pre-treatment to enhance inhaled or systemic drug therapy. Third, PFC’s anti-inflammatory properties help return to normal lung function. This research examines two applications of this technology: delivery of antibiotics to combat respiratory infections (antibacterial perfluorocarbon ventilation, APV) or delivery of growth factors to enhance alveolar repair (perfluorocarbon emulsions for alveolar repair, PEAR). This work represents an in-depth analysis of the emulsions used during APV and PEAR. Initial efforts evaluated emulsion efficacy under in vitro setting that better simulated lung in vivo antibiotic delivery. The subsequent studies utilized an in vivo rat model of bacterial respiratory infection to validate the effects of emulsion on pharmacokinetics and to assess APVs potential treatment benefits. Lastly, in vitro methods of cellular response assessed the utility of delivering growth factors in PEAR. Significant advancements were made in optimizing the emulsion as a viable means of pulmonary drug delivery. Final efforts resulted in a promising emulsion formulation that overcame the quick transport of tobramycin away from the lung and successfully reduced pulmonary bacterial load in vivo. In vitro applications of PEAR showed the emulsions posed a significant barrier to the availability and, thus, the biological effect of lysophosphatidic acid growth factors. Further in vivo work is required to improve APV’s efficacy over conventional treatments and to determine PEAR’s feasibility and efficacy in promoting lung repair.
2

ENDOTHELIAL CELL GROWTH, SHEAR STABILITY, AND FUNCTION ON BIOMIMETIC PEPTIDE FLUOROSURFACTANT POLYMERS

Larsen, Coby Christian 02 August 2007 (has links)
No description available.
3

Multifunctional Biomimetic Modifications to Address Endothelialization and Intimal Hyperplasia in Vascular Grafts

Bastijanic, Jennifer M. 03 June 2015 (has links)
No description available.
4

NMR Studies of Colloidal Systems in and out of Equilibrium

Yushmanov, Pavel V. January 2006 (has links)
The Thesis describes (i) the development of add-on instrumentation extending the capabilities of conventional NMR spectrometers and (ii) the application of the designed equipments and techniques for investigating various colloidal systems. The new equipments are: Novel designs of stopped-flow and temperature–jump inserts intended for conventional Bruker wide-bore superconductive magnets. Both inserts are loaded directly from above into the probe space and can be used together with any 10 mm NMR probe with no need for any auxiliary instruments. A set of 5 mm and 10 mm 1H – 19F – 2H NMR probes designed for heteronuclear 1H – 19F cross-relaxation experiments in Bruker DMX 200, AMX 300 and DMX 500 spectrometers, respectively. A two–stage low-pass filter intended for suppressing RF noise in electrophoretic NMR experiments. The kinetics of micellar dissolution and transformation in aqueous solutions of sodium perfluorooctanoate (NaPFO) is investigated using the stopped-flow NMR instrument. The sensitivity of NMR as detection tool for kinetic processes in micellar solutions is clarified and possible artefacts are analysed. In the NaPFO system, the micellar dissolution is found to proceed faster than 100 ms while surfactant precipitation occurs on the time scale of seconds-to-minutes. The kinetics of the coil-to–globule transition and intermolecular aggregation in a poly (Nisopropylacrylamide) solution are investigated by the temperature-jump NMR instrument. As revealed by the time evolution of the 1H spectrum, the T2 relaxation time and the self-diffusion coefficient D, large (>10 nm) and compact aggregates form in less than 1 second upon fast temperature increase and dissolve in less than 3 seconds upon fast temperature decrease. The intermolecular 1H – 19F dipole-dipole cross-relaxation between the solvent and solute molecules, whose fast rotational diffusion is in the extreme narrowing limit, is investigated. The solutes are perfluorooctanoate ions either in monomeric or in micellar form and trifluoroacetic acid and the solvent is water. The obtained cross-relaxation rates are frequency-dependent which clearly proves that there is no extreme narrowing regime for intermolecular dipole-dipole relaxation. The data provide strong constraints for the dynamic retardation of solvent by the solute. / QC 20100929
5

Modified Scanning Probes for the Analysis of Polymer Surfaces

Barrios, Carlos A. 01 September 2009 (has links)
No description available.

Page generated in 0.0724 seconds