Spelling suggestions: "subject:"flux compactification""
1 |
Classification of the Landscape of F-theory Vacua over K3×K3 by Gauge Groups: Comparison of SO(10)-vacua and SU(5)-vacua as an Application / K3×K3上のF理論真空のランドスケープの、ゲージ群に関する分類 : その応用としてSO(10)-真空とSU(5)-真空の比較Kimura, Yusuke 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18538号 / 理博第4014号 / 新制||理||1579(附属図書館) / 31438 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 國友 浩, 教授 杉本 茂樹, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
2 |
Duality symmetries in string-inspired supergravity: T-dualities and the gauge/gravity correspondenceWhiting, Catherine Ann 01 May 2015 (has links)
Motivated by the AdS/CFT correspondence, new supersymmetric solutions to Type IIB and Type IIA supergravity are presented. These solutions contain $AdS_5$ or $AdS_4$ factors and are generated using T-duality symmetries of supergravity. The technique used to generate these solutions consists of performing a series of non-Abelian and Abelian T-dualities, sometimes with coordinate shifts in-between, to Freund-Rubin type seed backgrounds. An added bonus of the gauge fixing procedure inherent in non-Abelian T-Duality is the freedom to generate backgrounds with extra free parameters, some examples of which are presented. Aspects of the dual field theories of these new solutions are analyzed using holography techniques. The supersymmetry of these new backgrounds is also discussed.
In addition to supergravity backgrounds with AdS, the study of generalized Calabi-Yau manifolds in the context of flux compactifications is briefly reviewed. The particular case of the resolved cone over $Y^{p,q}$ and its admission of generalized SU(3) structure solutions is examined. Contrary to geometries with $AdS$ factors, whose field theory duals are conformal field theories, these types of geometries can be phenomenologically interesting to study, as their gauge theory duals are minimally supersymmetric and confining, thus they could someday help aid our understanding of strongly-coupled QCD (Quantum Chromodynamics).
|
3 |
Cosmoparticle Physics and String TheorySjörs, Stefan January 2012 (has links)
This thesis deals with phenomenological and theoretical aspects of cosmoparticle physics and string theory. There are many open questions in these topics. In connection with cosmology we would like to understand the detailed properties of dark matter, dark energy, generation of primordial perturbations, etc., and in connection with particle physics we would like to understand the detailed properties of models that stabilize the electroweak scale, for instance supersymmetry. At the same time, we also need to understand these issues in a coherent theoretical framework. Such a framework is offered by string theory. In this thesis, I analyze the interplay between Higgs and dark matter physics in an effective field theory extension of the minimally supersymmetric standard model. I study a theory of modified gravity, where the graviton has acquired a mass, and show the explicit implementation of the Vainshtein mechanism, which allows one to put severe constraints on the graviton mass. I address the question of Planck scale corrections to inflation in string theory, and show how such corrections can be tamed. I study perturbations of warped throat regions of IIB string theory compactifications and classify allowed boundary conditions. Using this analysis, I determine the potential felt by an anti-D3-brane in such compactifications, using the explicit harmonic data on the conifold. I also address questions of perturbative quantum corrections in string theory and calculate one-loop corrections to the moduli space metric of Calabi-Yau orientifolds. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows:<strong> </strong>Paper 3: Manuscript. Paper 5: Manuscript. Paper 6: Manuscript.</p>
|
4 |
Supersymmetric Backgrounds in string theoryParsian, Mohammadhadi 06 May 2020 (has links)
In the first part of this thesis, we investigate a way to find the complex structure moduli, for a given background of type IIB string theory in the presence of flux in special cases. We introduce a way to compute the complex structure and axion dilaton moduli explicitly. In the second part, we discuss $(0,2)$ supersymmetric versions of some recent exotic $mathcal{N}=(2,2)$ supersymmetric gauged linear sigma models, describing intersections of Grassmannians. In the next part, we consider mirror symmetry for certain gauge theories with gauge groups $F_4$, $E_6$, and $E_7$. In the last part of this thesis, we study whether certain branched-double-cover constructions in Landau-Ginzburg models can be extended to higher covers. / Doctor of Philosophy / This thesis concerns string theory, a proposal for unification of general relativity and quantum field theory. In string theory, the building block of all the particles are strings, such that different vibrations of them generate particles. String theory predicts that spacetime is 10-dimensional. In string theorist's intuition, the extra six-dimensional internal space is so small that we haven't detected it yet. The physics that string theory predicts we should observe, is governed by the shape of this six-dimensional space called a `compactification manifold.' In particular, the possible ways in which this geometry can be deformed give rise to light degrees of freedom in the associated observable physical theory. In the first part of this thesis, we determine these degrees of freedom, called moduli, for a large class of solutions of the so-called type IIB string theory. In the second part, we focus on constructing such spaces explicitly. We also show that there can be different equivalent ways of constructing the same internal space. The third part of the thesis concerns mirror symmetry. Two compactification manifolds are called mirror to each other, when they both give the same four-dimensional effective theory. In this part, we describe the mirror of two-dimensional gauge theories with $F_4$, $E_6$, and $E_7$ gauge group, using the Gu-Sharpe proposal.
|
5 |
On moduli stabilisation and cosmology in type IIB flux compactificationsGil Pedro, Francisco M. S. V. January 2012 (has links)
This Thesis studies some aspects of string compactifications with particular em- phasis on moduli stabilisation and cosmology. In Chapter 1 I motivate the study of string compactifications as a way to build on the successes of the Standard Model of Particle Physics and of the theory of General Relativity. Chapter 2 constitutes an overview of the technical background necessary for the study of flux compactifications. I sketch how the desire to obtain a supersymmet- ric theory in four dimensions constrains us to consider compactifications of the ten dimensional theory in six dimensional Calabi-Yau orientifolds. I argue that it is strictly necessary to stabilise the geometry of this compact space in order to have a phenomenologically viable four dimensional theory. I introduce the large volume scenario of type IIB compactifications that successfully incorporates fluxes and sub- leading corrections to yield a four dimensional theory with broken supersymmetry and all geometrical moduli stabilised. The next four Chapters are devoted to the study of some phenomenological aspects of moduli stabilisation and constitute the original work developed for this Thesis. In Chapter 3 I investigate the consequences of field redefinitions in the stabilisation of moduli and supersymmetry breaking, finding that redefinitions of the small blow- up moduli do not significantly alter the standard picture of moduli stabilisation in the large volume scenario and that the soft supersymmetry breaking terms are generated at the scale of the gravitino mass. Chapter 4 deals with the putative destabilisation of the volume modulus by very dense objects. The analysis of the moduli potential shows that even the densest astrophysical objects cannot destabilise the moduli, and that destabilisation is only achievable in the context of black hole formation and cosmological singularities. In Chapter 5 I present a model of inflation within the large volume scenario. The inflaton is identified with a geometric modulus, the fibre modulus, and its potential generated by poly-instanton effects. The model is shown to be robust and consistent with current observational constraints. In Chapter 6 I introduce a model of quintessence, where the quintessence field and its potential share the same origin with the inflationary model of the previous Chapter. This model constitutes a stringy realisation of supersymmetric large extra dimensions, where supersymmetry, the low gravity scale and the scale of dark energy are intrinsically connected. I conclude in Chapter 7 outlining the direction of future research.
|
6 |
Making Maps and Keeping Logs : Quantum Gravity from Classical ViewpointsJohansson, Niklas January 2009 (has links)
This thesis explores three different aspects of quantum gravity. First we study D3-brane black holes in Calabi-Yau compactifications of type IIB string theory. Using the OSV conjecture and a relation between topological strings and matrix models we show that some black holes have a matrix model description. This is the case if the attractor mechanism fixes the internal geometry to a conifold at the black hole horizon. We also consider black holes in a flux compactification and compare the effects of the black holes and fluxes on the internal geometry. We find that the fluxes dominate. Second, we study the scalar potential of type IIB flux compactifications. We demonstrate that monodromies of the internal geometry imply as a general feature the existence of long series of continuously connected minima. This allows for the embedding of scenarios such as chain inflation and resonance tunneling into string theory. The concept of monodromies is also extended to include geometric transitions: passing to a different Calabi-Yau topology, performing its monodromies and then returning to the original space allows for novel transformations. All constructions are performed explicitly, using both analytical and numerical techniques, in the mirror quintic Calabi-Yau. Third, we study cosmological topologically massive gravity at the chiral point, a prime candidate for quantization of gravity in three dimensions. The prospects of this scenario depend crucially of the stability of the theory. We demonstrate the presence of a negative energy bulk mode that grows logarithmically toward the AdS boundary. The AdS isometry generators have non-unitary matrix representations like in logarithmic CFT, and we propose that the CFT dual for this theory is logarithmic. In a complementing canonical analysis we also demonstrate the existence of this bulk degree of freedom, and we present consistent boundary conditions encompassing the new mode.
|
Page generated in 0.1512 seconds