• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 71
  • 61
  • 39
  • 10
  • 10
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 526
  • 526
  • 115
  • 99
  • 84
  • 75
  • 63
  • 62
  • 56
  • 56
  • 46
  • 45
  • 43
  • 37
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Sulfate Resistance Of Blended Cements With Fly Ash And Natural Pozzolan

Duru, Kevser 01 September 2006 (has links) (PDF)
Numerous agents and mechanisms are known to affect the durability of a concrete structure during its service life. Examples include freezing and thawing, corrosion of reinforcing steel, alkali-aggregate reactions, sulfate attack, carbonation, and leaching by neutral or acidic ground waters. Among these, external sulfate attack was first identified in 1908, and led to the discovery of sulfate resistant Portland cement (SRPC). Besides SRPC, another way of coping with the problem of sulfate attack is the use of pozzolans either as an admixture to concrete or in the form of blended cements This study presents an investigation on the sulfate resistance of blended cements containing different amounts of natural pozzolan and/or low-lime fly ash compared to ordinary Portland cement and sulfate resistant Portland cement. Within the scope of this study, an ordinary Portland cement (OPC) and five different blended cements were produced with different proportions of clinker, natural pozzolan, low-lime fly ash and limestone. For comparison, a sulfate resistant Portland cement (SRPC) with a different clinker was also obtained. For each cement, two different mixtures with the water/cement (w/c) ratios of 0.485 and 0.560 were prepared in order to observe the effect of permeability controlled by water/cement ratio. The performance of cements was observed by exposing the prepared 25x25x285 mm prismatic mortar specimens to 5% Na2SO4 solution for 78 weeks and 50mm cubic specimens for 52 weeks. Relative deterioration of the specimens was determined by length, density and ultrasonic pulse velocity change, and strength examination at different ages. It was concluded that depending on the amount and effectiveness of the mineral additives, blended cements were considered to be effective for moderate or high sulfate environments. Moreover, the cement chemistry and w/c ratio of mortars were the two parameters affecting the performance of mortars against an attack. As a result of this experimental study it was found out that time to failure is decreasing with the increasing w/c ratio and the effect of w/c ratio was more important for low sulfate resistant cements with higher C3A amounts when compared to high sulfate resistant cements with lower C3A amounts.
192

A Study On Blended Bottom Ash Cements

Kaya, Ayse Idil 01 September 2010 (has links) (PDF)
Cement production which is one of the most energy intensive industries plays a significant role in emitting the greenhouse gases. Blended cement production by supplementary cementitious materials such as fly ash, ground granulated blast furnace slag and natural pozzolan is one of the smart approaches to decrease energy and ecology related concerns about the production. Fly ash has been used as a substance to produce blended cements for years, but bottom ash, its coarser counterpart, has not been utilized due to its lower pozzolanic properties. This thesis study aims to evaluate the laboratory performance of blended cements, which are produced both by fly ash and bottom ash. Fly ash and bottom ash obtained from Seyit&ouml / mer Power Plant were used to produce blended cements in 10, 20, 30 and 40% by mass as clinker replacement materials. One ordinary portland cement and eight blended cements were produced in the laboratory. Portland cement was ground 120 min to have a Blaine value of 3500&plusmn / 100 cm2/g. This duration was kept constant in the production of bottom ash cements. Fly ash cements were produced by blending of laboratory produced portland cement and fly ash. Then, 2, 7, 28 and 90 day compressive strengths, normal consistencies, soundness and time of settings of cements were determined. It was found that blended fly ash and bottom ash cements gave comparable strength results at 28 day curing age for 10% and 20% replacement. Properties of blended cements were observed to meet the requirements specified by Turkish and American standards.
193

Characteristics of PCDD/ Fs and metal contents in ash from different units in a municipal solid waste incinerator

Lin, Yu-Sheng 13 May 2008 (has links)
This study determined the polychlorinated dibenzo-p-dioxins/ dibenzo- furans (PCDD/Fs) and 22 metals contents in ash in the super heater (SH), economizer (EC), semi-dryer absorber (SDA), fabric filter (FF), fly ash pit (FAP) and bottom residue (BR) in a municipal solid waste incinerator (KTMSWI). Experimental results showed that average PCDD/FS contents in ash samples from the SH, EC, SDA, FF, FAP and BR were 0.102, 0.788, 0.210, 1.95, 2.04 and 0.0218 ng I-TEQ /g, respectively. PCDD/Fs content was very low in the SH and BR due to high temperatures (around 461¢XC in the SH and 914¢XC in combustion chamber). Conversely, total PCDD/Fs content was significantly high in ash samples from the EC (around 340¢XC), mainly because the temperature is within the favorable range of 250-400¢XC for PCDD/FS formation due to de nova reformation mechanisms. Although the SDA operated at 245¢XC, the PCDD/FS content decreased very significantly, mainly because the temperature was relatively low and because calcium carbonate was introduced into flue gases to dechlorinate and dilute chlorine-containing species. PCDD/Fs were captured by the active carbon in the FF. Furthermore, the duration that fly ash remained in the FF was longer than that for other incinerator units, and thus causing an increasing trend of PCDD/Fs level downstream (except the SDA). Total PCDD/Fs emission factors (£gg /ton-waste; £gg I-TEQ /ton-waste) in ash samples from different units were: SH (42.3; 0.846), EC (326; 6.12 ), SDA (58.1; 1.10), FF (1540; 61.3), FAP (2950; 107) and BR (537; 4.31). Most PCDD/Fs in ash were contributed by the FF (about 56%), and the generation of PCDD/Fs in ash was significant (about 35%) during the transfer process from different units to the FAP. A strong and positive correlation in a logarithmic form existed between PCDD/Fs and chlorine (Cl-) contents in ash. The results showed that principal metals in the incinerator ash were Al, Fe, Zn, Ba, Pb and Cu. On average, these six metals accounted for 96.6%, 96.8%, 97.0%, 94.2% and 96.7% of the total metals in SH, EC, SDA, FF and BR ash, respectively. The emission factors of individual metals from different units were obtained. Volatile metals, such as Cd, Sn, Sb, Hg and Pb, were mostly in fly ash, while lithophilic metals, such as Al, Fe, Ti, V, Cu, Mn, Fe, Co, Ni, Cu, Sr, Mo, Ag, Ba and Cr+6 were mainly in bottom ash. Distribution ratios for total metals in SH, EC, SDA, FF and BR ash were 4.87%, 4.26%, 2.89%, 8.17% and 79.81%, respectively. That is, about 20.2% of total metals were in fly ash and most metals (about 79.8%) were in bottom ash. The Pb content in EC ash and Hg content in FF ash were between alarm contents and maximum legal limits, while Cd and Pb contents in FF ash exceeded the maximum legal limits. The existing transportation system for transferring fly ash from different units to a fly ash pit should be modified for recycling the valuable metals. Ash with less than the alarm content for metals content, such as ash from the SH, SDA and BR, can be reused. Ash with metals exceeding the alarm contents, such as ash from the EC and FF, should be collected and transferred to a different fly ash pit for further treatment, such as metal recycling.
194

pH Effect on the Arsenic Separation in Waste Water of Coal Based Power Plant

Hao, Ye 01 May 2010 (has links)
Arsenic (As) poses a significant water quality problem and it is a big challenge for all coal-based power plant industries worldwide. Currently most of the researches on the leaching behavior of arsenic from fly ash are based on the titration experiments. In this study a simulation method is used to study on the pH effect on the arsenic separation of coal-based power plants. Both single point and composition survey simulation of the OLI stream analyzer are used in the study. The simulation results of single point calculation indicates that for the fly ash which has high lime weight percent and equilibrium fly ash solution pH is over 11 and between 7 and 9, that is, Type C fly ash, the simulation results for equilibrium pH in fly ash solutions have great accuracy compared to actual experiment results. Based on the results obtained from single point simulation, both acid and base titrations of composition survey are simulated and the output results suggest that for the same type of fly ash, the simulation results proves the general trend of arsenic solubility in fly ash solutions. The solubility of arsenic decreases with the increase of pH value. It is also noted that at the equilibrium pH fly ash solutions, the maximum solid/liquid ratio of arsenic concentration is observed for type C fly ash. For other fly ashes which have low lime weight percent, the simulation results have discrepancy compared to actual experiment results. This work is important in offering an alternative way of analyze the reasonable output species and relative concentrations for type C fly ash in the waste water storage pond under specific pH conditions, which can be of great importance for the power plants to monitor and minimize the environment pollution in order to meet the future federal regulations.
195

Effect of constituent materials and curing methods on the abrasion resistance and durability of high performance concrete for pre-cast pre-stressed bridge deck slabs /

Keshari, Shweta. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 120-125). Also available on the World Wide Web.
196

Nanoparticle-stabilized CO₂ foams for potential mobility control applications

Hariz, Tarek Rafic 21 November 2013 (has links)
Carbon dioxide (CO₂) flooding is the second most common tertiary recovery technique implemented in the United States. Yet, there is huge potential to advance the process by improving the volumetric sweep efficiency of injected CO₂. Delivering CO₂ into the reservoir as a foam is one way to do this. Surfactants have traditionally been used to generate CO₂ foams for mobility control; however, the use of nanoparticles as a foam stabilizing agent provides several advantages. Surfactant-stabilized foams require constant regeneration to be effective, and the surfactant is adsorbed onto reservoir rocks and is prone to chemical degradation at harsh reservoir conditions. Nanoparticle-stabilized foams have been found to be tolerant of high temperature and high salinity environments. Their nano size also allows them to be transported through reservoir rocks without blocking pore throats. Stable CO₂-in-water foams were generated using 5 nm silica nanoparticles with a short chain polyethylene glycol surface coating. These foams were generated by the co-injection of CO₂ and a nanoparticle dispersion through both rock matrix and fractures. A threshold shear rate was found to exist for foam generation in both fractured and non-fractured Boise sandstone cores. The ability of nanoparticles to generate foams only above a threshold shear rate is advantageous; in field applications, high shear rates are associated with high permeability zones, where the presence of foam is desired. Reducing CO₂ mobility in these high permeability zones diverts CO₂ into lower permeability regions containing not yet swept oil. Nanoparticles were also found to be able to stabilize CO₂ foams by co-injection through rough-walled fractures in cement cores, demonstrating their ability to stabilize foams without matrix flow. Experiments were conducted on the ability of fly ash, a waste product from burning coal in power plants, to stabilize oil-in-water emulsions and CO₂ foams. The use of fly ash particles as a foam stabilizing agent would significantly reduce material costs for potential tertiary oil recovery and CO₂ sequestration applications. Nano-milled fly ash particles without surface treatment were able to generate stable oil-in-water emulsions when high frequency, high energy vibrations were applied to a mixture of fly ash dispersion and dodecane. Oil-in-water emulsions were also generated by co-injecting fly ash and dodecane, a low pressure analog to CO₂, through a beadpack. Emulsions generated by co-injection, however, were unstable and coalesced within an hour. A threshold shear rate was required for the emulsion generation. Fly ash particles were found to be able to stabilize CO₂ foam in a high pressure batch mixing cell, but not by co-injection through a beadpack. Dispersions of fly ash particles were found to be stable only at low salinities (<1 wt% NaCl). / text
197

Evaluation of natural pozzolans as replacements for Class F fly ash in portland cement concrete

Cano, Rachel Irene 18 March 2014 (has links)
Most concrete produced today utilizes pozzolans or supplementary cementitious materials (SCMs) to promote better long term durability and resistance to deleterious chemical reactions. While other pozzolans and SCMs are available and provide many of the same benefits, Class F fly ash has become the industry standard for producing quality, durable concrete because of its low cost and wide-spread availability. With impending environmental and safety regulations threatening the availability and quality of Class F fly ash, it is becoming increasing important to find viable alternatives. This research aims to find natural, lightly processed, alternatives to fly ash that perform similarly to Class F fly ash with regards to pozzolanic reactivity and provide comparable compressive strength, workability, drying shrinkage, thermal expansion properties and resistance to alkali-silica reaction, sulfate attack, and chloride ion penetration. Eight fly ash alternatives from the US were tested for compatibility with the governing standard for pozzolans used in portland cement concrete and various fresh and hardened mortar and concrete properties. The results of this research indicate that six materials meet the requirements for natural pozzolans set by the American Society for Testing and Materials and many are comparable to Class F fly ash in durability tests. The primary concern when using these materials in concrete is the increase in water demand. The spherical particle shape of fly ash provides improved workability even at relatively low water-to-cement ratios; however, all of the materials tested for this research required grinding to achieve the appropriate particle size, resulting in an angular and rough surface area that requires more lubrication to achieve a workable consistency. So long as an appropriate water reducing admixture is used, six of the eight materials tested in this study are appropriate and beneficial for use in portland cement concrete. / text
198

Treatment of wastewater containing Melanoidin through simultaneous adsorption and biodegradation processes.

Ojijo, Vincent Omondi. January 2010 (has links)
M. Tech. Engineering : Chemical. / Evaluates the applicability of adsorption, biodegradation and hybrid adsorption and biodegradation system in treatment of wastewater containing melanoidin.Treatment of wastewater containing melanoidin through SAB process in fluidized bed bioreactor results in the best performance index as compared to adsorption and biodegradation processes undertaken singly. The synergies realized are more pronounced in fluidized bed bioreactor than in stirred tank system.
199

Complete Recycling and Utilization of Waste Concrete Through Geopolymerization

Ren, Xin January 2015 (has links)
This research investigates complete recycling and utilization of waste concrete to produce new structural concrete through geopolymerization. The investigation was conducted through both macro-and micro/nano-scale studies. First the geopolymer paste synthesized using a mixture of waste concrete fines (WCF) and class F fly ash (FA) as the source material and a mixture of NaOH solution (N) and Na2SiO3 solution (SS) as the alkaline activating agent was studied. Various NaOH concentrations, SS/N ratios, and WCF contents were used to produce geopolymer paste specimens in order to study their effect on the properties of the geopolymer paste. Uniaxial compression tests were conducted to measure the strength of the geopolymer paste specimens. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and Fourier transform infrared spectroscopy (FTIR) analyses were performed to investigate the micro/nano-structure, morphology and phase/surface elemental compositions of the geopolymer paste and the effect of calcium (Ca) on them. The results indicate that by using 10 M NaOH solution, SS/N of 2 and 50% WCF, the highest geopolymer paste strength can be obtained. Second, the interfacial transition zones (ITZs) between geopolymer (GP) and recycled aggregates (RA) were studied. Considering that RA consist of the stone particles and the attached paste/mortar from the original ordinary Portland cement (OPC) concrete, both the ITZs between GP and natural aggregate (NA) and those between GP and residual OPC paste/mortar (ROPM) were studied. For comparison, the ITZs between OPC paste and NA and those between OPC paste and ROPM were also investigated. 4-point bending tests were conducted to measure the bonding strength of the different types of ITZs at water to solid (W/S) ratio of 0.30, 0.35 and 0.40 for the geopolymer and OPC pastes after 7 and 14 days curing, respectively. SEM imaging was performed to investigate the microstructure of the ITZs. The results indicate that when NA is used, the bonding strength of both the GP-NA and OPC-NA ITZs decreases with higher water to solid (W/S) ratio. When ROPM is used, higher W/S ratio leads to smaller bonding strength for the GP-ROPM ITZ but greater bonding strength for the OPC-ROPM ITZ. Based on the measured bonding strength values for NA- and ROPM-based ITZs, the bonding strength of the GP-RA and OPC-RA ITZs was estimated by considering the average area coverage of ROPM on the RA surface. The GP-RA ITZ has the highest bonding strength among the different ITZs, implying the great potential for utilizing waste concrete (both the WCF and the RA) to produce geopolymer concrete. Third, based on the studies on geopolymer paste and ITZs, geopolymer concrete (GPC) was produced and studied using WCF and FA as the cementitious material and RA as the aggregate. For comparison, GPC using NA was also produced and studied at similar conditions. Various NaOH concentrations, SS/N ratios, and cement (WCF and FA) to aggregate (C/A) ratios were used to produce GPC specimens in order to study their effect on the behavior of GPC. The effect of water content and curing temperature on the initial setting time and 7-day unconfined compressive strength (UCS) of the GPC was also studied. The results show that the GPC produced from RA has higher UCS than the GPC from NA at both room curing temperature and 35°C curing temperature. Based on this study, it can be concluded that waste concrete can be completely recycled and used to produce new structural concrete based on the geopolymerization technology. Fourth, considering that the Si/Al and Na/Al ratios have great effect on the geopolymerization process and the properties of the final geopolymer product, a study was conducted on copper mine tailings (MT)-based geopolymer containing different amount of aluminum sludge (AS). The results indicate that by including AS and utilizing appropriate amount of NaOH, the UCS can be increased significantly. The main reason is because the addition of AS along with utilization of appropriate amount of NaOH makes both the Si/Al and Na/Al ratios reach the optimum values for geopolymerization, leading to higher degree of geopolymerization and more compact geopolymer microstructure. It is noted that although this study is not directly on waste concrete, it provides useful information for optimizing the design on complete recycling and utilization of waste concrete to produce new GPC. Finally, to better understand the effect of Ca on the geopolymerization process and the properties of geopolymer, molecular dynamics (MD) simulations were performed on geopolymer at different Ca contents. The molecular models at different Ca contents were constructed and uniaxial compression test was then performed on the numerical specimens. The results indicate that MD simulation is an effective tool for studying the effect of Ca on the properties of geopolymer at nano-scale.
200

Εκτίμηση της κινητικότητας ιχνοστοιχείων από δείγματα λιγνίτη, ιπτάμενης τέφρας, τέφρας εστίας και αποθέσεων σε όξινο, ουδέτερο καιι βασικό περιβάλλον

Ζηλάκου, Σταματίνα 01 October 2008 (has links)
Οι μεγάλες ποσότητες ιπτάμενης τέφρας και τέφρας εστίας που παράγονται κατά την καύση του χαμηλής ποιότητας λιγνίτη, όπως είναι ο λιγνίτης της Μεγαλόπολης, περιέχουν διάφορα τοξικά στοιχεία, όπως Cd, Co, Ni, Pb, Zn, τα οποία είναι δυνατό να εκπλυθούν και να ρυπάνουν το έδαφος, το επιφανειακό και το υπόγειο νερό. Σκοπός της παρούσας εργασίας είναι να εκτιμηθεί η κινητικότητα των ιχνοστοιχείων και η δυνατότητα έκπλυσής τους κάτω από συνθήκες διαφορετικών pH (3, 5, 7 και 8,5). Αντικείμενο της εργασίας αποτελεί η γεωχημική μελέτη δειγμάτων λιγνίτη, ιπτάμενης τέφρας, τέφρας εστίας και αποθέσεων. Οι εργαστηριακές εξετάσεις περιελάμβαναν προσεγγιστική και άμεση ανάλυση, καθώς και στοιχειακή ανάλυση με φασματομετρία ατομικής απορρόφησης φλόγας. Ακολούθησαν πειράματα απόπλυσης και προσδιορισμός των εκπλυομένων ιχνοστοιχείων As, Β, Ba, Be, Cd, Co, Cr, Cu, Ga, Ge, Hf, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Yb, Zn, Zr µε φασµατοµετρία μάζας επαγωγικού ζεύγους πλάσματος. Επίσης, προκειμένου να εκτιμηθεί η πτητικότητα των ιχνοστοιχείων κατά την καύση, υπολογίστηκε ο συντελεστής εμπλουτισμού. Για τη στατιστική επεξεργασία των αποτελεσμάτων εφαρμόστηκε η μέθοδος της παραγοντικής ανάλυσης τύπου R στα ποσοστά έκπλυσης των ιχνοστοιχείων. Από τις εργαστηριακές αναλύσεις προέκυψε ότι ο λιγνίτης και οι τέφρες περιείχαν υψηλότερα ποσοστά σε Ca και Fe έναντι των K, Mg και Na. Όσον αφορά στα ιχνοστοιχεία, ο λιγνίτης εμφανίζει υψηλές περιεκτικότητες σε Ba, Mn, P, Sr, Ti, ενώ οι τέφρες παρουσιάζονται εμπλουτισμένες σε αυτά τα ιχνοστοιχεία, με εξαίρεση το Ba, και επιπλέον σε Cr, Mo, Ni, V. Με βάση τους συντελεστές εμπλουτισμού, τα ιχνοστοιχεία B, Ba, Li, Rb, Sn εμφανίζονται ιδιαίτερα πτητικά. Μέτρια πτητικότητα παρατηρείται για τα As, Cd, Ga, Mo, Ni, P, Pb, Sb, Sc, Sr, Ta, W, Zn, ενώ τα Be, Co, Cr, Cu, Ge, Hf, Mn, Nb, Th, Ti, U, V, Y, Yb, Zr χαρακτηρίζονται ως μη πτητικά. Ως προς την κινητικότητα των ιχνοστοιχείων, τα μεγαλύτερα ποσοστά έκπλυσης εμφανίζουν τα Cd, Mo, Rb, Sb, Sr. Μέτρια κινητικότητα παρατηρείται για τα As, B, Ba, Cr, Ga, Li, Mn, P, U, V, W, ενώ αρκετά δυσκίνητα παρουσιάζονται τα Be, Co, Cu, Ge, Hf, Nb, Ni, Pb, Sc, Sn, Ta, Th, Ti, Y, Yb, Zn, Zr. Γενικά, σε όλες τις τιμές pH, τα As, Co, Cr, Cu, Mn, Ρ, Th δείχνουν μία προτίμηση έκπλυσης από το λιγνίτη, ενώ τα Ba, Li, Mo, Rb, Sr, V από την ιπτάμενη τέφρα. Η κινητικότητα των B, Cd, Ga, Ge, Sb, U, W αυξάνεται στα δείγματα της τέφρας εστίας, ενώ στις αποθέσεις δεν παρατηρείται κοινή τάση έκπλυσης για κάποια ιχνοστοιχεία. / The great quantity of fly and bottom ash produced during the combustion of high-ash lignite, like the Megalopolis lignite, are rich in toxic elements, such as Co, Cd, Ni, Pb, Zn; these can be leached resulting in contamination of the soil, as well as of the surface and underground water. The aim of this study is to estimate the mobility of trace elements and the leaching possibility from ash in different pH values (3, 5, 7 and 8.5). The object of the current study is the geochemical analyses of samples from bulk lignite, fly ash, bottom ash and ash deposits. Lignite and ash samples were evaluated by means of proximate and ultimate analysis, as well as by determining the concentrations of elements using FAAS. ICP-MS analyses were carried out in order to determine the contents of the trace elements As, Β, Ba, Be, Cd, Co, Cr, Cu, Ga, Ge, Hf, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Yb, Zn, Zr in leachates. Furthermore, to approach the volatility of trace elements during combustion, the relative enrichment factor (RE) was calculated. For statistical reason, the type R factor analysis was applied in the leaching percentage of trace elements. The results reveal that the Ca and Fe contents were higher than these of K, Mg and Na in the lignite and ash samples. As far as trace elements are concerned, the lignite shows higher Ba, Mn, P, Sr, Ti contents, while the ashes are enriched in Cr, Mn, Mo, Ni, P, Sr, Ti, V. Boron, Ba, Li, Rb, Sn appear to be the most volatile elements, while As, Cd, Ga, Mo, Ni, P, Pb, Sb, Sc, Sr, Ta, W, Zn show a medium volatility. Likewise, Be, Co, Cr, Cu, Ge, Hf, Mn, Nb, Th, Ti, U, V, Y, Yb, Zr are not volatile during combustion. Cadmium, Mo, Rb, Sb, Sr reveal the highest mobility. Medium mobility is observed in As, B, Ba, Cr, Ga, Li, Mn, P, U, V, W, while Be, Co, Cu, Ge, Hf, Nb, Ni, Pb, Sc, Sn, Ta, Th, Ti, Y, Yb, Zn, Zr are not mobile. Generally, in all pH values, As, Co, Cr, Cu, Mn, Ρ, Th are leached from lignite and Ba, Li, Mo, Rb, Sr, V from fly ash. The mobility of B, Cd, Ga, Ge, Sb, U and W is higher in bottom ash samples, while such behavior is not common in the ash deposits for any elements.

Page generated in 0.0826 seconds