• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flexibility in MLVR-VSC back-to-back link

Tan, Jiak-San January 2006 (has links)
This thesis describes the flexible voltage control of a multi-level-voltage-reinjection voltage source converter. The main purposes are to achieve reactive power generation flexibility when applied for HVdc transmission systems, reduce dynamic voltage balancing for direct series connected switches and an improvement of high power converter efficiency and reliability. Waveform shapes and the impact on ac harmonics caused by the modulation process are studied in detail. A configuration is proposed embracing concepts of multi level, soft-switching and harmonic cancellation. For the configuration, the firing sequence, waveform analysis, steady-state and dynamic performances and close-loop control strategies are presented. In order not to severely compromise the original advantages of the converter, the modulated waveforms are proposed based on the restrictions imposed mathematically by the harmonic cancellation concept and practically by the synthesis circuit complexity and high switching losses. The harmonic impact on the ac power system prompted by the modulation process is studied from idealistic and practical aspects. The circuit topology being proposed in this thesis is developed from a 12-pulse bridge and a converter used classically for inverting power from separated dc sources. Switching functions are deduced and current paths through the converter are analysed. Safe and steady-state operating regions of the converter are studied in phasor diagrams to facilitate the design of simple controllers for active power transfer and reactive power generations. An investigation into the application of this topology to the back-to-back VSC HVdc interconnection is preformed via EMTDC simulations.

Page generated in 0.0661 seconds