• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 13
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Live cell imaging demonstrates the role of purinoreceptor P2X7 in actin cytoskeletal rearrangements and focal adhesion dynamics after injury in corneal epithelial cells

Teicher, Gregory 03 November 2015 (has links)
The cornea forms the anterior surface of the eye and is responsible for most of the eye’s refractive power. Injury to the outermost layer of the cornea, a non-keratinized stratified squamous epithelium, triggers a transient rise in intracellular calcium concentration that propagates radially from the wound. This calcium mobilization is initiated by the binding of nucleotides such as adenosine triphosphate (ATP), which are released from cells ruptured by the injury, to purinergic receptors (purinoreceptors) on undamaged cells near the wound. Downstream effects of this injury-induced "calcium wave" are generally thought to include the activation of signaling pathways that promote wound healing. However, the specific contributions of individual purinergic receptors to the overall wound response have in most cases not been well characterized. Purinoreceptors are classified into two broad categories: the P2Y class of G protein-coupled receptors, which act through second messengers to release calcium into the cytosol from the endoplasmic reticulum, and the P2X class of ligand-gated ionotropic receptors, which release calcium into the cytosol from the extracellular environment. Previously, our lab established the importance of the P2Y2 receptor to corneal epithelial wound healing by showing that P2Y2 activation makes a substantial contribution to the overall wound-induced calcium response, particularly in cells back from the leading edge, and promotes cell migration after injury. P2Y2 activation was also found to promote the phosphorylation of proteins involved in focal adhesions, which are multi-protein complexes that facilitate cell migration by transmitting the forces generated by the actin cytoskeleton to the extracellular environment. More recently, our lab has begun to demonstrate that P2X7 may play an equally important, yet distinct and perhaps complementary role in corneal epithelial wound healing. For instance, P2X7 was found to strongly influence the intensity of the injury-induced calcium response in cells immediately adjacent to the wound, and treatment with the P2X7 inhibitor oxidized ATP (oxATP) was shown to impair migration after injury both in vitro and in ex vivo rat corneas. Additionally, immunofluorescence of cells fixed eight hours after injury revealed an altered actin cytoskeletal architecture and localization of the focal adhesion proteins talin and vinculin in oxATP-treated cells compared to control cells. The goal of the present study was to further characterize P2X7’s role in the overall response to injury by using live cell imaging to examine actin cytoskeletal rearrangements and focal adhesion dynamics after injury under both control conditions and conditions of P2X7 inhibition. Human corneal limbal epithelial (HCLE) cells were transduced to express either actin or talin tagged with green fluorescent protein (GFP), grown into confluent monolayers, and scratch wounded in the presence or absence of oxATP. Cells at the leading edge of the wound were imaged using confocal microscopy every 10 minutes for 4 hours beginning 0.5 hours after injury. Analysis of the resulting actin-GFP movies revealed trends toward delayed extension of filopodia in oxATP-treated cells relative to control cells, as well as complex changes in the number of filopodia per cell over time. Additionally, while both groups formed lamella containing thick actin bundles that were oriented perpendicularly to the direction of migration, in oxATP-treated cells the formation of these structures was delayed. Furthermore, in oxATP-treated cells these actin bundles tended to persist once formed. This was in contrast to control cells, in which they tended to turn over to be replaced by thinner and shorter actin bundles that were oriented more obliquely relative to the direction of migration. Finally, analysis of talin-GFP movies demonstrated that focal adhesion lifespan was extended in oxATP-treated cells compared to control cells. Focal adhesions in oxATP-treated cells also exhibited a greater propensity to merge together or split apart, further suggesting impaired focal adhesion turnover. Overall, these findings suggest that P2X7 plays a critical role in promoting migration after corneal epithelial injury by coordinating rapid rearrangements of the actin cytoskeleton and turnover of focal adhesions at the leading edge.
12

Mechanistic basis for calcium-sensing by the protein-tyrosine kinase 2-beta (PYK2)

Momin, Afaque Ahmad Imtiyaz 10 1900 (has links)
The focal adhesion kinase (FAK) and the protein tyrosine kinase 2-beta (PYK2) are two closely related non-receptor tyrosine kinases that link cell adhesion, migration and proliferation, and thus also promote cancer cell invasiveness. FAK and PYK2 have the same domain structure (comprising the FERM, kinase and FAT domains) and possess several overlapping functions, however their cellular roles can be different or even opposing. In particular, PYK2 can be activated by calcium, and has important functions in the brain and neurodegenerative disease. The molecular basis for calcium-based activation of PYK2 is unclear and controversial. In this work we combined biophysical and structural methods to determine the molecular basis for calcium-sensing in PYK2. For this, we investigated the least-studied region of these kinases, namely the long linker (KFL) region between the kinase and FAT domains. This linker is only ~20% conserved between FAK and PYK2, and, therefore, is a prime candidate for causing their differential properties. We find that the linker harbors a helical segment, which is conserved in both FAK and PYK2, and contributes to their dimerization (an important step in their activation). Helix-flanking regions differ between both proteins, and we show that these of PYK2 create a non-canonical dimeric binding site for calcium-bound calmodulin. Calmodulin-binding is synergistic with linker dimerization in PYK2, explaining how calcium influx can be translated into activation of PYK2. Collectively, our work clarifies the capacities for FAK and PYK2 to receive, process and transduce cellular signals, and may provide new opportunities for targeted therapeutic intervention.
13

The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration

12 July 2020 (has links)
Yes / Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
14

Estímulo por soro em fibroblastos quiescentes induz a fosforilação da miosina-Va e sua localização em adesões focais / Serum by stimulation in quiescent fibroblasts induces phosphorylation of myosin - Va and its location in focal adhenosis

Zenzen, Johnny Alex Rockenbach 11 March 2016 (has links)
A montagem e desmontagem das adesões focais (AF) desempenham um papel fundamental em diversos processos celulares, incluindo migração celular e sobrevivência. Resultados prévios do nosso laboratório mostram que fibroblastos nulos ou silenciados para miosina-Va sofrem um atraso na desmontagem das adesões, sugerindo um papel para a miosinaVa neste processo. Neste trabalho, visamos analisar a dinâmica de montagem das AF em fibroblastos murinos imortalizados NIH3T3, utilizando sondas fluorescentes para visualização de componentes de adesão focal. A formação das AF foi analisada após estímulo por soro de células quiescentes, o que leva a intensa polimerização de actina, reorganização do citoesqueleto e montagem das AF. A cinética de montagem das AF foi observada em ensaios ao longo do tempo, de células fixadas em 0, 5, 15, 30, 120 minutos após estímulo, e marcadas para miosina-Va fosforilada (p-miosina-Va, S1650), FAK fosforilada (p-FAK, Y397), vinculina, dinamina-2, integrina-?1, faloidina, Ki67 e DAPI. Os nossos resultados mostraram um aumento de fluorescência de p-miosina-Va por todo o citoplasma após a estímulo com soro, e revelaram que a p-miosina-Va co-localiza com pFAK nas AF logo após o estímulo, essa localização da p-miosina-Va nas AF diminui ao passar do tempo e retorna após 120 minutos. Isto é consistente com os resultados anteriores de um papel da miosina-Va na dinâmica das AF. Também é possível perceber uma maior concentração de p-miosina-Va e dinamina-2 na região perinuclear, 5 minutos após estímulo, e o espalhamento de ambas as proteínas pelo citoplasma com o passar do tempo. Demonstramos, por Western blotting, que o estímulo por soro não causa alteração na quantidade total de miosina-Va em nenhum dos tempos analisados em relação à condição de quiescência, mas induz, após 5 e 15 minutos, um aumento apreciável de p-miosina-Va, que sofre queda e variações nos tempos posteriores. Para nosso conhecimento, esta é a primeira demonstração de que a fosforilação da miosina-Va aumenta em resposta ao soro e estamos investigando se este evento está ligado à dinâmica das adesões focais em fibroblastos / The assembly and disassembly of focal adhesions (FA) play a critical role in several cellular process, including cell migration and survival. Previous work from our laboratory showed that fibroblasts without myosin-Va show a delay in focal adhesion disassembly, suggesting a role for myosin-Va in this process. In this work, we aim at imaging the dynamics of focal adhesion disassembly and reassembly in cells, with fluorescent probes for visualization of focal adhesion components. Here, we used murine NIH3T3 fibroblasts to analyze FA formation after serum stimulation of quiescent cells, which leads to intense polymerization of actin and reorganization of the cytoskeleton and FA assembly. The kinetics of FA assembly was observed in a time-course assay of cells fixed at 0, 5, 15, 30 and 120 min after serum stimulation, and stained for phosphorylated myosin-Va (p-myosin-Va, S1650), phosphorylated FAK (p-FAK, Y397), vinculin, phalloidin and DAPI. Our results showed an increase of pmyosin-Va staining throughout the cytoplasm upon serum stimulation, and revealed that pmyosin-Va does not colocalize with FAK in FA at early time points. However, colocalization is observed after 30 to 120 min. This is consistent with previous results of a role for myosin-Va in FA disassembly. It is also possible to observe a higher concentration of p-myosin-Va and dynamin-2 in the perinuclear region 5 minutes after stimulation, and the spreading of both proteins in the cytoplasm over time. We demonstrate by Western blotting that serum stimulation does not cause change in total amount of myosin-Va, in any of the times analyzed in relation to the quiescent condition, but induces, after 5 and 15 minutes, an appreciable increase of pmyosin-Va suffering drop and variations in the later times. To our knowledge, this is the first demonstration that phosphorylation of myosin-Va increases in response to serum and we are investigating whether this event is connected to the dynamics of focal adhesions in fibroblasts
15

Investigating conformational changes of proteins using Förster Resonance Energy Transfer

Balloi, Eleonora January 2015 (has links)
Förster Resonance Energy Transfer (FRET)-based techniques are gaining an increasing importance in cell biology and cell-matrix adhesion studies because they allow both the detection of conformational changes of target proteins and their localisation in cells. Frequency Domain-Fluorescence Lifetime Microscopy (FD-FLIM) is currently considered one of the most reliable methods to measure FRET in live cells. However, due to its dependence on many technical prerequisites, its use is not yet widespread. The purpose of this work was to first establish FD-FLIM measurements of FRET on a new FD-FLIM microscope module. Then we aimed to apply FD-FLIM-FRET measurements to the study of conformational changes of the cell matrix-adhesion proteins vinculin and integrin and of the growth factor receptor Tie-2. In the first part of the work, published FRET probes including distance-sensors and two sets of vinculin-based probes were extensively tested with FD-FLIM, sensitised emission and ratiometric FRET. FD-FLIM was shown to be the most accurate method in approximating molecular distances between fluorophores. Moreover this study unveiled specific caveats associated with both existing vinculin FRET probes. FD-FLIM was then used to study conformational changes of the extracellular matrix receptor alphavβ3 integrin and of the angiopoietin receptor Tie-2 using specific FRET probes designed by us. While data showed that the alphav-integrin-FRET probe localised to adhesion sites, more experiments will be required to evaluate its full functionality. The Tie-2-FRET probe was fully functional and, upon ligand binding, allowed the detection of a bending movement of the extracellular domain towards the cell membrane. Finally, a combination of FRET, immunofluorescence and tension release experiments were used to show that intracellular tension is not required to maintain integrins in their activated conformation. However, intracellular tension is required to recruit other key proteins such as vinculin, talin and tensin to adhesions sites. Overall this work demonstrates the importance of FD-FLIM-FRET as a tool to investigate conformational changes of adhesion proteins and transmembrane receptors within the cell environment.
16

Effects of mechanical forces on cytoskeletal remodeling and stiffness of cultured smooth muscle cells

Na, Sungsoo 02 June 2009 (has links)
The cytoskeleton is a diverse, multi-protein framework that plays a fundamental role in many cellular activities including mitosis, cell division, intracellular transport, cell motility, muscle contraction, and the regulation of cell polarity and organization. Furthermore, cytoskeletal filaments have been implicated in the pathogenesis of a wide variety of diseases including cancer, blood disease, cardiovascular disease, inflammatory disease, neurodegenerative disease, and problems with skin, nail, cornea, hair, liver and colon. Increasing evidence suggests that the distribution and organization of the cytoskeleton in living cells are affected by mechanical stresses and the cytoskeleton determines cell stiffness. We developed a fully nonlinear, constrained mixture model for adherent cells that allows one to account separately for the contributions of the primary structural constituents of the cytoskeleton and extended a prior solution from the finite elasticity literature for use in a sub-class of atomic force microscopy (AFM) studies of cell mechanics. The model showed that the degree of substrate stretch and the geometry of the AFM tip dramatically affect the measured cell stiffness. Consistent with previous studies, the model showed that disruption of the actin filaments can reduce the stiffness substantially, whereas there can be little contribution to the overall cell stiffness by the microtubules or intermediate filaments. To investigate the effect of mechanical stretching on cytoskeletal remodeling and cell stiffness, we developed a simple cell-stretching device that can be combined with an AFM and confocal microscopy. Results demonstrate that cyclic stretching significantly and rapidly alters both cell stiffness and focal adhesion associated vinculin and paxillin, suggesting that focal adhesion remodeling plays a critical role in cell stiffness by recruiting and anchoring F-actin. Finally, we estimated cytoskeletal remodeling by synthesizing data on stretch-induced dynamic changes in cell stiffness and focal adhesion area using constrained mixture approach. Results suggest that the acute increase in stiffness in response to an increased cyclic stretch was probably due to an increased stretch of the original filaments whereas the subsequent decrease back towards normalcy was consistent with a replacement of the highly stretched original filaments with less stretched new filaments.
17

Effects of mechanical forces on cytoskeletal remodeling and stiffness of cultured smooth muscle cells

Na, Sungsoo 02 June 2009 (has links)
The cytoskeleton is a diverse, multi-protein framework that plays a fundamental role in many cellular activities including mitosis, cell division, intracellular transport, cell motility, muscle contraction, and the regulation of cell polarity and organization. Furthermore, cytoskeletal filaments have been implicated in the pathogenesis of a wide variety of diseases including cancer, blood disease, cardiovascular disease, inflammatory disease, neurodegenerative disease, and problems with skin, nail, cornea, hair, liver and colon. Increasing evidence suggests that the distribution and organization of the cytoskeleton in living cells are affected by mechanical stresses and the cytoskeleton determines cell stiffness. We developed a fully nonlinear, constrained mixture model for adherent cells that allows one to account separately for the contributions of the primary structural constituents of the cytoskeleton and extended a prior solution from the finite elasticity literature for use in a sub-class of atomic force microscopy (AFM) studies of cell mechanics. The model showed that the degree of substrate stretch and the geometry of the AFM tip dramatically affect the measured cell stiffness. Consistent with previous studies, the model showed that disruption of the actin filaments can reduce the stiffness substantially, whereas there can be little contribution to the overall cell stiffness by the microtubules or intermediate filaments. To investigate the effect of mechanical stretching on cytoskeletal remodeling and cell stiffness, we developed a simple cell-stretching device that can be combined with an AFM and confocal microscopy. Results demonstrate that cyclic stretching significantly and rapidly alters both cell stiffness and focal adhesion associated vinculin and paxillin, suggesting that focal adhesion remodeling plays a critical role in cell stiffness by recruiting and anchoring F-actin. Finally, we estimated cytoskeletal remodeling by synthesizing data on stretch-induced dynamic changes in cell stiffness and focal adhesion area using constrained mixture approach. Results suggest that the acute increase in stiffness in response to an increased cyclic stretch was probably due to an increased stretch of the original filaments whereas the subsequent decrease back towards normalcy was consistent with a replacement of the highly stretched original filaments with less stretched new filaments.
18

Biophysics of Blood Platelet Contraction

Schwarz G. Henriques, Sarah 10 July 2012 (has links)
No description available.
19

Effects of Cadmium on Actin Glutathionylation and Focal Adhesions

Choong, Grace Mei Yee 21 November 2013 (has links)
The toxic metal ion cadmium (Cd2+) is pro-oxidant and specifically disrupts the actin cytoskeleton in renal mesangial cells. This study investigated the role of Cd2+-mediated redox modulation of actin through protein S-glutathionylation and the effects of cytoskeletal changes on focal adhesions (FAs) through a Ca2+/calmodulin dependent-protein kinase II (CaMK-II) pathway. Only at low concentrations of Cd2+ (0.5-2 μM) was there an increase in actin glutathionylation, which was a reactive oxygen species-independent, total glutathione-dependent effect. Immunofluorescence of the cytoskeleton suggests that increases in glutathionylation levels occurring under low [Cd2+] are protective in vivo. Higher concentrations (>= 10 μM) of Cd2+ resulted in loss of vinculin and focal adhesion kinase (FAK) from FAs, concomitant with cytoskeletal disruption. Inhibition of CaMK-II preserved cytoskeletal integrity and focal contacts, while decreasing the migration of FAK-phosphoTyr925 to a membrane-associated compartment. This study adds further insight into the Cd2+-mediated effects on the cytoskeleton and FAs.
20

Effects of Cadmium on Actin Glutathionylation and Focal Adhesions

Choong, Grace Mei Yee 21 November 2013 (has links)
The toxic metal ion cadmium (Cd2+) is pro-oxidant and specifically disrupts the actin cytoskeleton in renal mesangial cells. This study investigated the role of Cd2+-mediated redox modulation of actin through protein S-glutathionylation and the effects of cytoskeletal changes on focal adhesions (FAs) through a Ca2+/calmodulin dependent-protein kinase II (CaMK-II) pathway. Only at low concentrations of Cd2+ (0.5-2 μM) was there an increase in actin glutathionylation, which was a reactive oxygen species-independent, total glutathione-dependent effect. Immunofluorescence of the cytoskeleton suggests that increases in glutathionylation levels occurring under low [Cd2+] are protective in vivo. Higher concentrations (>= 10 μM) of Cd2+ resulted in loss of vinculin and focal adhesion kinase (FAK) from FAs, concomitant with cytoskeletal disruption. Inhibition of CaMK-II preserved cytoskeletal integrity and focal contacts, while decreasing the migration of FAK-phosphoTyr925 to a membrane-associated compartment. This study adds further insight into the Cd2+-mediated effects on the cytoskeleton and FAs.

Page generated in 0.0992 seconds