1 |
Biophysics of Blood Platelet ContractionSchwarz G. Henriques, Sarah 10 July 2012 (has links)
No description available.
|
2 |
Active and Passive Biomechanical Measurements for Characterization and Stimulation of Biological CellsGyger, Markus 26 September 2013 (has links) (PDF)
From a physical perspective biological cells consist of active soft matter that exist in a thermodynamic state far from equilibrium. Not only in muscles but also during cell proliferation, wound healing, embryonic development, and many other physiological tasks, generation of forces on the scale of whole cells is required. To date, cellular contractions have been ascribed to adhesion dependent processes such as myosin driven stress fiber formation and the development of focal adhesion complexes. In this thesis it is shown for the first time that contractions can occur independently of focal adhesions in single suspended cells.
To measure mechanical properties of suspended cells the Optical Stretcher – a dualbeam laser trap – was used with phase contrast video microscopy which allowed to extract the deformation of the cell for every single frame. For fluorescence imaging confocal laser scanning microscopy was employed. The ratio of the fluorescence of a temperature sensitive and a temperature insensitive rhodamine dye was utilized to determine the temperatures inside the optical trap during and after Optical Stretching. The rise in temperature at a measuring power of 0.7W turned out to be enough to open a temperature sensitive ion channel transfected into an epithelial cell line. In this way a massive Ca2+ influx was triggered during the Optical Stretcher experiment. A new setup combining Optical Stretching and confocal laser scanning microscopy allowed fluorescence imaging of these Ca2+ signals while the cells were deformed by optically induced surface forces, showing that the Ca2+ influx could be manipulated with adequate drugs. This model system was then employed to investigate the influence of Ca2+ on the observed contractions, revealing that they are partially triggered by Ca2+.
A phenomenological mathematical model based on the fundamental constitutive equation for linear viscoelastic materials extended by a term accounting for active contractions allowed to quantify the activity of the measured cells. The skewness and the median of the strain distributions were shown to depend on the activity of the cells. The introduced model reveals that even in measurements, that seemingly are describable by passive viscoelasticity, active contractililty might be superimposed. Ignoring this effect will lead to erroneous material properties and misinterpretation of the data.
Taken together, the findings presented in this thesis demonstrate that active processes are an essential part of cellular mechanics and cells can contract even independently of adhesions. The results provide a method that allows to quantify active contractions of suspended cells. As the proposed model is not based on specific assumptions on force generating processes, it paves the way for a thorough investigation of different influences, such as cytoskeletal structures and intra-cellular signaling processes, to cellular contractions. The results present an important contribution for better mechanical classification of cells in future research with possible implications for medical diagnosis and therapy.
|
3 |
Impact des fluctuations de l'humidité relative de l'air sur la survie de Listeria monocytogenes : application à l'amélioration de l'hygiène dans les ateliers de production alimentaire / Impact of relative air humidity fluctuations on the survival of Listeria monocytogenes : application to improve hygiene in food processing environmentZoz, Fiona 13 December 2016 (has links)
Les fluctuations hydriques influencent l'activité et la viabilité des microorganismes. L’humidité relative de l’air est ainsi un paramètre potentiellement efficace pour maîtriser le développement et la persistance de microorganismes pathogènes. Cependant, l’efficacité de ce paramètre reste peu connue par rapport à d’autres facteurs environnementaux comme le pH ou la température. Le séchage est l'étape finale des procédures de nettoyage et de désinfection en industrie agroalimentaire. Cependant, il est aujourd'hui utilisé de façon empirique alors qu'il pourrait permettre d'améliorer la décontamination des surfaces dans les ateliers et diminuer la persistance des microorganismes. Malgré les procédures de nettoyage et de désinfection, la bactérie Listeria monocytogenes est fréquemment retrouvée dans l'industrie agroalimentaire et y persiste pendant de longues périodes. Evaluer et comprendre l'impact des fluctuations hydriques sur la survie de L. monocytogenes afin d'en optimiser la destruction sur une surface, constituent ainsi les principaux objectifs de cette thèse.Dans un premier temps, 30 souches de L. monocytogenes isolées de différents environnements de transformation des aliments et présentant différents sérotypes et niveaux de virulence ont été exposées à un stress hyperosmotique et à un séchage. Cette approche a permis d'analyser les différences de résistance entre les souches et de sélectionner quatre souches présentant différents profils de résistance pour poursuivre les travaux.Afin de définir les conditions de fluctuations hydriques les plus létales pour les souches de L. monocytogenes, différents paramètres ont été étudiés tels que la vitesse de déshydratation, le niveau d’humidité relative, la vitesse de réhydratation, l’application de cycles successifs de déshydratation-réhydratation et le milieu de séchage.Enfin, les mécanismes cellulaires induisant la mort de L. monocytogenes lors des fluctuations hydriques ont été explorés par spectroscopie infrarouge à transformée de Fourier, microscopie à force atomique, cytométrie en flux et par séchage en anaérobiose. Ces différentes méthodes ont permis de révéler qu'un stress mécanique et structural sont majoritairement responsables de la mort de L. monocytogenes.L’ensemble de ce travail démontre que la maîtrise du niveau et des variations de l’humidité relative de l’air est un moyen efficace pour détruire L. monocytogenes et offre de réelles perspectives d’application pour améliorer l’hygiène des ateliers de production alimentaire. / Environmental hydration fluctuations influence microorganism viability and activity. The air relative humidity (RH) is a potentially effective parameter to control the development and the persistence of pathogenic microorganisms. However, efficiency of this parameter remains not well characterized compared to others environmental factors such as pH or temperature. Drying is the final step of cleaning and disinfection processes used in the food industry. However, if this process is empirically used, it could also be used to improve the decontamination of surfaces in premises and reduce the persistence of microorganisms. Despite cleaning and disinfection, Listeria monocytogenes is commonly found in the food industry and persists during long periods. Thus, the main objective of this thesis is to evaluate and understand the impact of hydric fluctuations on L. monocytogenes survival to optimize its destruction on a surface.First, thirty L. monocytogenes strains, isolated from different food processing environment and belonging to different serotypes and levels of virulence, were exposed to hyperosmotic stress and drying process. Differences in resistances among the strains were analyzed and four strains with different resistance to hydric stress were selected to continue this study.To define the most lethal hydric fluctuation conditions for L. monocytogenes strains, various parameters, such as the dehydration kinetic, relative humidity level, the rehydration kinetic, the application of successive dehydration and rehydration cycles and drying medium, have been studied.Finally, cellular mechanisms inducing the cell death during hydric fluctuations were investigated by Fourier transform infrared spectroscopy, atomic force microscopy, and flow cytometry and anaerobic drying. These different methods revealed that mechanical and structural stresses are primarily responsible for the death of L. monocytogenes.This work demonstrates that the control of RH level and variation is an effective means for the destruction of L. monocytogenes and offers real perspectives to improve hygiene in food production premises.
|
4 |
Active and Passive Biomechanical Measurements for Characterization and Stimulation of Biological CellsGyger, Markus 17 July 2013 (has links)
From a physical perspective biological cells consist of active soft matter that exist in a thermodynamic state far from equilibrium. Not only in muscles but also during cell proliferation, wound healing, embryonic development, and many other physiological tasks, generation of forces on the scale of whole cells is required. To date, cellular contractions have been ascribed to adhesion dependent processes such as myosin driven stress fiber formation and the development of focal adhesion complexes. In this thesis it is shown for the first time that contractions can occur independently of focal adhesions in single suspended cells.
To measure mechanical properties of suspended cells the Optical Stretcher – a dualbeam laser trap – was used with phase contrast video microscopy which allowed to extract the deformation of the cell for every single frame. For fluorescence imaging confocal laser scanning microscopy was employed. The ratio of the fluorescence of a temperature sensitive and a temperature insensitive rhodamine dye was utilized to determine the temperatures inside the optical trap during and after Optical Stretching. The rise in temperature at a measuring power of 0.7W turned out to be enough to open a temperature sensitive ion channel transfected into an epithelial cell line. In this way a massive Ca2+ influx was triggered during the Optical Stretcher experiment. A new setup combining Optical Stretching and confocal laser scanning microscopy allowed fluorescence imaging of these Ca2+ signals while the cells were deformed by optically induced surface forces, showing that the Ca2+ influx could be manipulated with adequate drugs. This model system was then employed to investigate the influence of Ca2+ on the observed contractions, revealing that they are partially triggered by Ca2+.
A phenomenological mathematical model based on the fundamental constitutive equation for linear viscoelastic materials extended by a term accounting for active contractions allowed to quantify the activity of the measured cells. The skewness and the median of the strain distributions were shown to depend on the activity of the cells. The introduced model reveals that even in measurements, that seemingly are describable by passive viscoelasticity, active contractililty might be superimposed. Ignoring this effect will lead to erroneous material properties and misinterpretation of the data.
Taken together, the findings presented in this thesis demonstrate that active processes are an essential part of cellular mechanics and cells can contract even independently of adhesions. The results provide a method that allows to quantify active contractions of suspended cells. As the proposed model is not based on specific assumptions on force generating processes, it paves the way for a thorough investigation of different influences, such as cytoskeletal structures and intra-cellular signaling processes, to cellular contractions. The results present an important contribution for better mechanical classification of cells in future research with possible implications for medical diagnosis and therapy.
|
Page generated in 0.094 seconds