• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration

12 July 2020 (has links)
Yes / Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
2

Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana.

Brembu, Tore January 2006 (has links)
<p>Small GTP-binding proteins are molecular switches that serve as important regulators of numerous cellular processes. In animal and plant cells, the Rho family of small GTPases participate in e.g. organisation of the actin cytoskeleton, production of reactive oxygen species through the NADPH oxidase complex, regulation of gene expression. The three most extensively studied subgroups of the Rho GTPase family are Cdc42, Rho and Rac. One of the mechanisms by which animal Rac and Cdc42 GTPases regulate actin filament organisation is through activation of the ARP2/3 complex, a multimeric protein complex which induces branching and nucleation/elongation/polymerisation of actin filaments. Activation of the ARP2/3 complex by Rac and Cdc42 is mediated through the proteins WAVE and WASP, respectively.</p><p>In a search for Ras-like GTPases in Arabidopsis, we identified a family of genes with similarity to Rac GTPases. Screens of cDNA and genomic libraries resulted in the finding of 11 genes named ARACs/AtRACs. Genes encoding Rho, Cdc42 or Ras homologues were not identified. Expression analysis of AtRAC1 to AtRAC5 indicated that AtRAC1, AtRAC3, AtRAC4 and AtRAC5 are expressed in all parts of the plant, whereas AtRAC2 is preferentially expressed in root, hypocotyl and stem.</p><p>The AtRAC gene family can be divided into two main groups based on sequence similarity, gene structure and post-translational modification. AtRAC group II genes contain an additional exon, caused by the insertion of an intron which disrupts the C-terminal geranylgeranylation motif. Instead, group II AtRACs contain a putative motif for palmitoylation. Phylogenetic analyses indicated that the division of plant RACs into group I and group II occurred before the split of monocotyledonous and dicotyledonous plants. Analyses of the genes neighbouring AtRAC genes revealed that several of the plant RAC genes have been created through duplications.</p><p>The restricted/tissue-specific expression pattern of AtRAC2 led us to do a more detailed expression analysis of this gene. A 1.3 kb fragment of the upstream (regulatory) sequence of AtRAC2 directed expression of GUS or GFP to developing primary xylem in root, hypocotyl, leaves and stem. In root tips, the onset GUS staining or GFP fluorescence regulated by the AtRAC2 promoter slighty preceded the appearance of secondary cell walls. In stems, GUS staining coincided with thickening of xylem cell walls. Transgenic plants expressing constitutively active AtRAC2 displayed defects in the polar growth of leaf epidermal cells, indicating that AtRAC2 may be able to regulate the actin cytoskeleton. Surprisingly, an AtRAC2 T-DNA insertion mutant did not show any observable phenotypes. GFP fusion proteins of wild type and constitutively active AtRAC2 were both localised to the plasma membrane. The data suggest that AtRAC2 is involved in development of xylem vessels, likely through regulation of the actin cytoskeleton or NADPH oxidase.</p><p>The role of RAC GTPases in regulation of the actin cytoskeleton in plants is well documented. However, although the ARP2/3 complex had been identified in plants/Arabidopsis, the mechanisms regulating this complex were unknown. Through database searches, we identified three Arabidopsis genes, AtBRK1, AtNAP and AtPIR, which encoded proteins with similarity to subunits of a protein complex shown to regulate the activity of WAVE1 in mammalian cells. T-DNA inactivation mutants of AtNAP and AtPIR displayed morphological defects on epidermal cells undergoing polar expansion, such as trichomes and leaf pavement cells. The phenotypes were similar to those observed for ARP2/3 complex mutants, suggesting that AtNAP and AtPIR act in the same pathway as the ARP2/3 complex in plants. The actin cytoskeleton in atnap and atpir mutants was less branched than in wild type plants; instead, actin filaments aggregated in thick actin bundles.</p><p>Finally, we have recently discovered a small gene family encoding putative WAVE homologues. In mammalian cells, Rac activates WAVE1 through binding to PIR121 or Sra1 (the mammalian homologues of AtPIR). The discovery of a putative WAVE regulatory complex as well as putative WAVE homologues in Arabidopsis suggests that plant RAC GTPases regulate organisation of the actin cytoskeleton during polar growth at least partly through the ARP2/3 complex, using an evolutionarily conserved mechanism.</p>
3

Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana.

Brembu, Tore January 2006 (has links)
Small GTP-binding proteins are molecular switches that serve as important regulators of numerous cellular processes. In animal and plant cells, the Rho family of small GTPases participate in e.g. organisation of the actin cytoskeleton, production of reactive oxygen species through the NADPH oxidase complex, regulation of gene expression. The three most extensively studied subgroups of the Rho GTPase family are Cdc42, Rho and Rac. One of the mechanisms by which animal Rac and Cdc42 GTPases regulate actin filament organisation is through activation of the ARP2/3 complex, a multimeric protein complex which induces branching and nucleation/elongation/polymerisation of actin filaments. Activation of the ARP2/3 complex by Rac and Cdc42 is mediated through the proteins WAVE and WASP, respectively. In a search for Ras-like GTPases in Arabidopsis, we identified a family of genes with similarity to Rac GTPases. Screens of cDNA and genomic libraries resulted in the finding of 11 genes named ARACs/AtRACs. Genes encoding Rho, Cdc42 or Ras homologues were not identified. Expression analysis of AtRAC1 to AtRAC5 indicated that AtRAC1, AtRAC3, AtRAC4 and AtRAC5 are expressed in all parts of the plant, whereas AtRAC2 is preferentially expressed in root, hypocotyl and stem. The AtRAC gene family can be divided into two main groups based on sequence similarity, gene structure and post-translational modification. AtRAC group II genes contain an additional exon, caused by the insertion of an intron which disrupts the C-terminal geranylgeranylation motif. Instead, group II AtRACs contain a putative motif for palmitoylation. Phylogenetic analyses indicated that the division of plant RACs into group I and group II occurred before the split of monocotyledonous and dicotyledonous plants. Analyses of the genes neighbouring AtRAC genes revealed that several of the plant RAC genes have been created through duplications. The restricted/tissue-specific expression pattern of AtRAC2 led us to do a more detailed expression analysis of this gene. A 1.3 kb fragment of the upstream (regulatory) sequence of AtRAC2 directed expression of GUS or GFP to developing primary xylem in root, hypocotyl, leaves and stem. In root tips, the onset GUS staining or GFP fluorescence regulated by the AtRAC2 promoter slighty preceded the appearance of secondary cell walls. In stems, GUS staining coincided with thickening of xylem cell walls. Transgenic plants expressing constitutively active AtRAC2 displayed defects in the polar growth of leaf epidermal cells, indicating that AtRAC2 may be able to regulate the actin cytoskeleton. Surprisingly, an AtRAC2 T-DNA insertion mutant did not show any observable phenotypes. GFP fusion proteins of wild type and constitutively active AtRAC2 were both localised to the plasma membrane. The data suggest that AtRAC2 is involved in development of xylem vessels, likely through regulation of the actin cytoskeleton or NADPH oxidase. The role of RAC GTPases in regulation of the actin cytoskeleton in plants is well documented. However, although the ARP2/3 complex had been identified in plants/Arabidopsis, the mechanisms regulating this complex were unknown. Through database searches, we identified three Arabidopsis genes, AtBRK1, AtNAP and AtPIR, which encoded proteins with similarity to subunits of a protein complex shown to regulate the activity of WAVE1 in mammalian cells. T-DNA inactivation mutants of AtNAP and AtPIR displayed morphological defects on epidermal cells undergoing polar expansion, such as trichomes and leaf pavement cells. The phenotypes were similar to those observed for ARP2/3 complex mutants, suggesting that AtNAP and AtPIR act in the same pathway as the ARP2/3 complex in plants. The actin cytoskeleton in atnap and atpir mutants was less branched than in wild type plants; instead, actin filaments aggregated in thick actin bundles. Finally, we have recently discovered a small gene family encoding putative WAVE homologues. In mammalian cells, Rac activates WAVE1 through binding to PIR121 or Sra1 (the mammalian homologues of AtPIR). The discovery of a putative WAVE regulatory complex as well as putative WAVE homologues in Arabidopsis suggests that plant RAC GTPases regulate organisation of the actin cytoskeleton during polar growth at least partly through the ARP2/3 complex, using an evolutionarily conserved mechanism.
4

Rôle de la clathrine dans la formation des lamellipodes / Clathrin is required for Scar/Wave mediated lamellipodium formation

Gautier, Jérémie 21 September 2011 (has links)
Le complexe Scar/WAVE génère la formation des lamellipodes par l'intermédiaire du complexe Arp2/3 responsable de la polymérisation de réseaux d'actine branchés. Dans le but d'identifier de nouveaux régulateurs du complexe Scar/WAVE, nous avons conduit un crible en cellules de Drosophiles combinant une approche protéomique à une approche de génomique fonctionnelle. La chaîne lourde de la clathrine a été identifiée au cours de ce crible comme une protéine interagissant avec le complexe Scar/WAVE et dont la déplétion affecte la formation des lamellipodes. Ce rôle de la clathrine dans la formation des lamellipodes peut être découplé de son rôle classique dans le transport vésiculaire en utilisant différentes approches. De plus, la clathrine est localisée au lamellipode en l'absence d'adapteurs et des protéines accessoires de l'endocytose. La surexpression de la clathrine affecte le recrutement membranaire du complexe WAVE réduisant ainsi la vélocité des protrusions membranaire et la migration cellulaire. Par opposition, lorsque la clathrine est envoyée artificiellement à la membrane plasmique par une fusion à une séquence myristoylée, on observe une augmentation du recrutement membranaire du complexe Scar/WAVE, de la vélocité des protrusions membranaires et de la migration cellulaire. L'ensemble de ces résultats montrent que la clathrine envoie le complexe Scar/WAVE à la membrane plasmique et donc contrôle la formation des lamellipodes en plus de son rôle plus classique dans le traffic membranaire. / The Scar/Wave complex (SWC) generates lamellipodia through Arp2/3-dependent polymerization of branched actin networks. In order to identify new SWC regulators, we conducted a screen in Drosophila cells combining proteomics with functional genomics. This screen identified Clathrin Heavy Chain (CHC) as a protein that binds to the SWC and whose depletion affects lamellipodium formation. This role of CHC in lamellipodium formation can be uncoupled from its role in membrane traffic by several experimental approaches. Furthermore, CHC is detected in lamellipodia in the absence of the adaptor and accessory proteins of endocytosis. We found that CHC overexpression decreased membrane recruitment of the SWC, resulting in reduced velocity of protrusions and reduced cell migration. In contrast, when CHC was targeted to the membrane by fusion to a myristoylation sequence, we observed an increase in membrane recruitment of the SWC, in protrusion velocity and in cell migration. Together these data suggest that CHC brings the SWC to the plasma membrane, thereby controlling lamellipodium formation, in addition to its classical role in membrane traffic.
5

Coordination spatio-temporelle des regulateurs du reseau branche d’actine dans les structures motiles / Spatio-temporal coordination of branched actin network regulators in motile structures

Mehidi, Mohamed El Amine 13 December 2016 (has links)
La motilité cellulaire est un processus intégré essentiel à de nombreux phénomènes physiologiques tels que la formation du cône de croissance et la plasticité synaptique. Des dérégulations de la motilité cellulaire peuvent être à l’origine de la formation de métastases ou de pathologies neuropsychiatriques comme la schizophrénie et l'autisme. La compréhension des mécanismes régulant la migration cellulaire est donc un enjeu majeur. La motilité cellulaire repose sur la formation de diverses structures constituées de réseaux d’actine branchés telles que le lamellipode. La formation du lamellipode nécessite l’intervention de protéines régulatrices de l’actine telles que Rac1 et les complexes Wave et Arp2/3. Grâce à l’utilisation de suivi de protéine unique, nous avons pu comprendre comment la coordination spatio-temporelle de ces régulateurs contrôle la formation et la morphologie des lamellipodes de cellules migrantes. Nous avons ainsi découvert que l’activation et la localisation du complexe Wave étaient régulées de manière enzymatique mais également mécanique. Dans une première étude, nous avons montré que la RhoGTPase Rac1 active le complexe Wave spécifiquement à l’extrémité du lamellipode. Dans une seconde étude, nous avons révélé que la localisation du complexe Wave est régulée par la dynamique des filaments des réseaux branchés d’actine. Ces données soulignent l’importance du complexe Wave dans la formation du lamellipode et révèlent l’existence d’une régulation mécanique de la localisation du complexe Wave. / Cell motility is an integrated process involved in critical phenomena such as axonal pathfinding and synaptic plasticity. Dysregulation of cell motility can induce metastasis and abnormal spine shapes observed in neuropsychiatric disorders like autism and schizophrenia. Therefore it is essential to understand how cell motility is regulated. Cell motility requires the formation of branched actin networks propelled by actin polymerization that lead to the formation of membrane protrusions such as the lamellipodium. Several actin regulatory proteins are involved in this process, such as Rac1 and the WAVE and ARP2/3 complexes. Using single protein tracking, we revealed key phenomena concerning the spatio-temporal regulation of lamellipodium formation by actin regulatory proteins. We found that the localization and activation of the WAVE complex was enzymatically regulated, but also mechanically. First, we showed that the Rac1 RhoGTPase activates the WAVE complex specifically at the tip of the lamellipodium. We also showed that WAVE complex localization is regulated by the dynamics of branched-network actin filaments. This study confirms the crucial role of the WAVE complex in lamellipodium formation and reveals the existence of a mechanical regulation of the localization of this complex in the cell.
6

Les facteurs spécifiques de l’endocytose indépendante de la clathrine suivie par les récepteurs de cytokines / Specific factors involved in clathrin independant endocytosis of cytokines receptors

Basquin, Cyril 20 September 2013 (has links)
L’endocytose est le processus qui permet l’entrée spécifique et active dans la cellule du milieu extracellulaire et des substances qu’il contient. Ces dernières années, plusieurs mécanismes d’endocytose ont été identifiés, mais seule la voie impliquant la clathrine a été bien caractérisée. Il a été montré que certains récepteurs de cytokines comme celui de l’interleukine-2 (IL-2) empruntent une voie d’endocytose indépendante de la clathrine. Précédemment, mon laboratoire a identifié huit facteurs impliqués dans cette voie d’entrée dont l’actine et la dynamine. Nous savons notamment que l’activation de la RhoGTPase Rac1 permet l’induction des kinases Pak1 et Pak2 régulant ainsi la cortactine, le recrutement de N-WASP et la polymérisation d’actine nécessaire à l’internalisation de l’IL-2R. Cependant, les facteurs en amont de cette cascade Rac-Pak étaient inconnus et le rôle du cytosquelette d’actine restait mal défini. Les travaux que j’ai effectué durant mon doctorat ont mis en évidence que la PI3K en interagissant avec l’IL-2R, permettait la production locale de PI(3,4,5)P3 qui induisait le recrutement de Vav2; un facteur conduisant à l’activation de Rac1. De plus, j’ai montré que Rac1 activé était ensuite recruté par la PI3K, permettant ainsi l’activation locale de la cascade Rac/Pak lors de l’entrée de l’IL-2R. Ces données, qui ont fait l’objet d’une publication, ont montré que la PI3K n’était pas seulement impliquée dans la signalisation de l’IL-2, mais également dans son endocytose. Par la suite, la réalisation d’un crible par ARNi portant sur l’étude du rôle de 324 protéines humaines lors de l’entrée de l’IL-2R, a permis l’identification de 65 nouveaux facteurs impliqués dans ce mécanisme. Parmi ces protéines, j’ai étudié plus particulièrement le rôle du complexe WAVE connu pour être induit à la membrane plasmique par Rac1 et la PI3K. J’ai confirmé l’implication de ce complexe lors de l’entrée de l’IL-2R et mis en évidence qu’il interagissait avec le récepteur. De plus, cette étude a montré que le complexe WAVE était impliqué précocement dans ce mécanisme, probablement en permettant le recrutement du récepteur aux pieds de protrusions membranaires que le complexe pourrait induire. Cette localisation spécifique du récepteur suggère ainsi un nouveau mécanisme de formation des vésicules d’endocytose dont le puits s’initierait à partir des invaginations existantes à la base des protrusions membranaires. / Endocytosis is a basic and essential process used by eukaryotic cells to internalize, actively and specifically, a wide range of molecules. To date, several endocytic routes have been characterized, but the only well studied pathway is clathrin-dependent. This study focuses on a poorly characterized mechanism, the clathrin-independent endocytosis, used by several cytokine receptors such as the interleukin 2 receptors (IL-2R). Previously, my lab identified 8 factors in this process, most of them are related to actin polymerization and dynamin. We now know that the activation of the RhoGTPase Rac1 is required to induce Paks that regulate cortactin, N-WASP recruitment and actin polymerization essential for IL-2R uptake. However, upstream factors involved in the Rac-Pak cascade were unknown and the actin cytoskeleton function poorly characterised. During my PhD, I showed that IL-2R and the phosphatidylinositol 3-kinase (PI3K) interact, leading to the local production of phosphatidylinositol (3,4,5)-triphosphate (PIP3) and the recruitment by this lipid of the RacGEF Vav2, an activator of Rac1. In addition, I showed that activated Rac1 was able to interact with PI3K allowing the local activation of the Rac-Pak cascade during IL-2R entry. These published data highlight the dual role of PI3K as a regulator of both IL-2R endocytosis and IL-2 signaling. In an attempt to identify new actors involved in the endocytosis of IL-2R, I then performed a small interfering RNA (siRNA) screening, targeting 324 proteins involved mainly in membrane deformation. From this screening we identified 65 proteins and among them we found the WAVE complex as a new factor implicated in IL-2R uptake. Interestingly, to be recruited and activated at the plasma membrane, the WAVE complex required Rac1 and PI3K, two proteins essentials during IL-2R entry. First, I confirmed the results obtained from the screening and found that IL-2R can interact with the WAVE complex. In addition, I observed an early involvement of this complex during IL-2R uptake, which could be needed for the localization of the receptor at the basis of plasma membrane protrusions. These results reveal a new model for the formation of endocytic vesicles: IL-2R is recruited at the basis of WAVE-induced membrane protrusions initiating the pit and vesicle.

Page generated in 0.0661 seconds