• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 24
  • 19
  • 10
  • 7
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 208
  • 43
  • 30
  • 25
  • 21
  • 18
  • 17
  • 17
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Fog Harvesting: Inspired by Spider Silk

Cen, Yijia 29 January 2020 (has links)
The water crisis has been an increasing challenge in some places in the world. One proposed solution that has drawn lots of attention is fog harvesting. A commonly used fog collector is a vertical mesh, usually made of poly materials. Small water droplets can easily get pinned and quick evaporation is the major common challenge for vertical meshes. Coating the fog mesh with superhydrophobic chemicals is one of the solutions. However, superhydrophobicity is not durable and it may contaminate the collected water. In addition, it requires a high professional maintenance and laboratory operation standard. As a result, it is impractical to set such fog collectors in regions and countries with water crisis. Low cost, harmless, easily fabricated, higher coalesce rate and low maintenance are the five pillars for this research. This thesis topic is inspired by spider silk's ability to direct water droplets to certain locations to further enhance water collecting rate. This directional droplet movement is caused by spindle-knot and joint structure on the biomimetic silk. The spindle-knot is randomly porous, and the joint is stretched porous. In addition, the spindle-knot has a tilted angle β above the joint region. Due to these unique structures, there are three droplet movement controlling forces – surface tension force, hysteresis force, and Laplace pressure force. This thesis presents detailed equation derivations for each driving force in the introduction section. Spindle-knot is the pivot point to direct water, forming the spindle-knot structure is another focus of this thesis. Fluid coating and dip-coating with dimethylformamide (DMF), a solvent with a low evaporation rate, is the highly used methods to form the spindle-knot structures due to its simple setup and low cost. However, DMF is an extremely hazardous organic compound, and it requires high laboratory operation standards. In the second section of this thesis, DMF has been replaced with water/ethanol and photocurable materials to construct the spindle-knots. Furthermore, Additive manufacturing (3D printing method) was adopted to synthesize bionic spider web with spindle-knot structures. / Master of Science / Water shortage is one of the highest concerns all around the world and collecting fog water has drawn lots of attention recently. The focus of this thesis is to increase the fog collection rate by using less hazardous, low maintenance and low-cost methods. Commonly used fog collector is a large vertical plastic mesh. However, those large meshes suffer from water pinning and easily evaporation issues. Water repellent chemicals have been studied and used to dissolve those issues, however, the chemical coating will not last long and it will contaminate the collected water easily. Moreover, coating the water repellent chemicals requires professional operation and maintenance. To solve this issue without using chemical coating, we have learned unique water collection and directional behavior from spider silk. In a humid day, you will easily find the spider web with fully covered water droplets in an organized order. If we zoom in on single spider silk, the spider silk is composed of many puff and joint regions. Those puff regions have higher water collection ability than the joint regions, and this puff region shrinks down to form the spindle-knot shape with angle β above the joint region. This unique spindle-knot structure induces the water directional movement, and three forces- surface tension force, pinning force, and Laplace pressure force – are controlling the moving direction. Chapter 1 shows equation derivations with surface material effects, surface roughness effects and water droplet landing location effects. To form such special spindle-knot structure, commonly used formation methods are fluid coating and dip coating by using an organic polymer solvent. However, commonly used organic polymer-solvent suffer from a high level of hazardous, resulting in high laboratory requirement and operation cost. In Chapter 2 of this thesis, that commonly used organic polymer-solvent will be replaced by water/ethanol mixture and light-sensitive materials to form the spindle-knots. Furthermore, the 3D printing method is adopted to build a spider web with spindle-knot structures.
42

A comparison between database and Internet of Thing solutions : For remote measuring of radon

Svensson, Wictor January 2018 (has links)
More and more devices around us are connected to the internet and communicate to each other. This includes devices such as radon sensors. Radon is a radio active gas and is the cause of several hundred cases of lung cancer. Smart connected radon sensors can be helpful to reduce the levels of radon as they provide remote access to the user. This study examines the opportunity to connect an already existing radon sensor to the “Internet of Things”. The aim of this study has been to answer the problem “find a better solution for the IoT system and develop it”. The study was performed with a literature study of three Internet of Things platforms. This resulted in one Internet of Thing platform being used throughout the study. A database system and a system with the chosen platform was implemented and a time measurement of the different systems was performed. The study has shown that a less secured system is faster and it is also shown that the Amazon Web Service IoT Core is fast with respect to the many features offered. The study concludes that the choice of system depends on where and how the system is supposed to be implement. If the system just needs to send and store data, a regular MySQL database is enough. If the system in the future is supposed to be able to communicate with other devices, a IoT platform should be used.
43

The fog-unit : Evaluation of the fog-unit’s effect on network performance

Holm, Rasmus January 2018 (has links)
Today at various locations and factories we have a lot of sensors and actuators that interact with each other and a control-unit. The control-unit is in most cases a cloud-based solution. This is in most cases a good solution. However, there is a rise in expected devices and sensors which will most likely be too much data for the existing network to handle. This paper researches if a fog-unit might be the solution to this problem. The setup of the fog-unit in the network is a unit between the cloud and the sensors and actuators. In this paper the fog-unit and sensors/actuators have been emulated on Raspberry Pi’s. The sensors are emulated using python-threads and communicate with the fog-unit using the UDP-based protocol CoAP and the fog communicates to the cloud using the TCP- based protocol MQTT. After a prototype was built it using said Raspberry Pi’s it was sent through a few measurements in the fields of bandwidth, cloud-utilization and response times. This was later compared to another setup without the fog-unit as the control setup. The result with this kind of setup was that a fog-unit lowers the cloud-utilization and use of bandwidth, however it increases the round trip time of a request from the cloud by a large amount. Which leads to the conclusion that a fog-unit in this kind of setup might be a good network solution if the response time to the cloud isn’t important.
44

Integrando grades móveis em uma arquitetura orientada a serviços / Integrating mobile grids into a service oriented architecture

Segura, Danilo Costa Marim 16 June 2016 (has links)
O aumento no número de dispositivos móveis, como smartphones, tablets e laptops, e o avanço em seu potencial computacional permitiu considerá-los como recursos computacionais. O uso de recursos computacionais com maior proximidade vem crescendo ano após ano, sendo chamado de Fog computing, em que os elementos na borda da Internet são explorados, uma vez que os serviços computacionais convencionais podem estar indisponíveis ou sobrecarregados. Dessa forma, este projeto de Mestrado tem como foco possibilitar o uso de dispositivos móveis no provimento de serviços computacionais entre si de forma colaborativa através da heurística Maximum Regret adaptada, que busca alocar tarefas computacionais em dispositivos locais de forma a minimizar o consumo de energia e evitar dispositivos não confiáveis. Também há uma meta-heurística em um nível global, que interconecta os diferentes aglomerados de dispositivos móveis na borda da Internet, e possui informações globais de Quality of Service (QoS). Foram realizados experimentos que mostraram que evitar dispositivos móveis como recursos com um baixo grau de confiabilidade possibilitou diminuir o impacto no consumo de energia, além de ser possível diminuir os tempos de resposta e de comunicação ao ajustar a política de seleção de aglomerados externos. / The increasing number of mobile devices, such as smartphones, tablets and laptops, as well as advances in their computing power have enabled us to consider them as resources, exploring the proximity. The use of near computing resources is growing year by year, being called as Fog computing, where the elements on the edge of the Internet are exploited, once the computer services providers could be unavailable or overloaded. Thus, this Masters project focuses on using mobile devices to provide computing services among them through a heuristic called Adapted Maximum Regret, which tries to minimize energy consumption and avoid untrustable devices. There is also top-level metaheuristic which interconnects different clusters of devices on the edge of the Internet with global information to guarantee Quality of Services (QoS). We conducted a set of experiments that showed us to avoid devices with a high degree of failures to save more energy when allocating tasks among them, as well as decreasing the applications response time and communication through adjusts in the selection algorithm of external agglomerates.
45

Combining Heuristics for Optimizing and Scaling the Placement of IoT Applications in the Fog / Combinaison d'heuristiques pour optimiser et dimensionner le placement d'applications IoT dans le Fog

Xia, Ye 17 December 2018 (has links)
Alors que l’informatique en brouillard amène les ressources de traitement et de stockage à la périphérie du réseau, il existe un besoin croissant de placement automatisé (c.-à-d. La sélection de l'hôte) pour déployer des applications distribuées. Un tel placement doit être conforme aux besoins en ressources des applications dans une infrastructure de brouillard hétérogène et dynamique, et traiter la complexité apportée par les applications Internet des objets (IoT) liées aux capteurs / actionneurs. Cette thèse présente un modèle, une fonction objective et des heuristiques pour résoudre le problème de la mise en place d'applications IoT distribuées dans le brouillard. En combinant les heuristiques proposées, notre approche est capable de gérer les problèmes à grande échelle et de prendre efficacement des décisions de placement adaptées à l'objectif - en optimisant les performances des applications placées. L'approche proposée est validée par une analyse de complexité et une simulation comparative avec des tailles et des applications de tailles variables. / As fog computing brings processing and storage resources to the edge of the network, there is an increasing need of automated placement (i.e., host selection) to deploy distributed applications. Such a placement must conform to applications' resource requirements in a heterogeneous fog infrastructure, and deal with the complexity brought by Internet of Things (IoT) applications tied to sensors and actuators. This paper presents four heuristics to address the problem of placing distributed IoT applications in the fog. By combining proposed heuristics, our approach is able to deal with large scale problems, and to efficiently make placement decisions fitting the objective: minimizing placed applications' average response time. The proposed approach is validated through comparative simulation of different heuristic combinations with varying sizes of infrastructures and applications.
46

Integrando grades móveis em uma arquitetura orientada a serviços / Integrating mobile grids into a service oriented architecture

Danilo Costa Marim Segura 16 June 2016 (has links)
O aumento no número de dispositivos móveis, como smartphones, tablets e laptops, e o avanço em seu potencial computacional permitiu considerá-los como recursos computacionais. O uso de recursos computacionais com maior proximidade vem crescendo ano após ano, sendo chamado de Fog computing, em que os elementos na borda da Internet são explorados, uma vez que os serviços computacionais convencionais podem estar indisponíveis ou sobrecarregados. Dessa forma, este projeto de Mestrado tem como foco possibilitar o uso de dispositivos móveis no provimento de serviços computacionais entre si de forma colaborativa através da heurística Maximum Regret adaptada, que busca alocar tarefas computacionais em dispositivos locais de forma a minimizar o consumo de energia e evitar dispositivos não confiáveis. Também há uma meta-heurística em um nível global, que interconecta os diferentes aglomerados de dispositivos móveis na borda da Internet, e possui informações globais de Quality of Service (QoS). Foram realizados experimentos que mostraram que evitar dispositivos móveis como recursos com um baixo grau de confiabilidade possibilitou diminuir o impacto no consumo de energia, além de ser possível diminuir os tempos de resposta e de comunicação ao ajustar a política de seleção de aglomerados externos. / The increasing number of mobile devices, such as smartphones, tablets and laptops, as well as advances in their computing power have enabled us to consider them as resources, exploring the proximity. The use of near computing resources is growing year by year, being called as Fog computing, where the elements on the edge of the Internet are exploited, once the computer services providers could be unavailable or overloaded. Thus, this Masters project focuses on using mobile devices to provide computing services among them through a heuristic called Adapted Maximum Regret, which tries to minimize energy consumption and avoid untrustable devices. There is also top-level metaheuristic which interconnects different clusters of devices on the edge of the Internet with global information to guarantee Quality of Services (QoS). We conducted a set of experiments that showed us to avoid devices with a high degree of failures to save more energy when allocating tasks among them, as well as decreasing the applications response time and communication through adjusts in the selection algorithm of external agglomerates.
47

Fog forecasting at Cape Town International Airport : a climatological approach

Van Schalkwyk, Lynette 15 February 2012 (has links)
Cape Town International Airport (CTIA) is located along the extreme southern portion of the west coast of South Africa which has the highest frequency of fog in the country. Fog occurs more frequently at CTIA than at any other of the international airports in South Africa. Fog forecasting research in South Africa has largely been neglected and fog forecast verification results show the urgent need for improvement. Accurate fog forecasts are imperative for the aviation industry to prevent costly flight delays and diversions. The main aim of this research is to improve the forecasts of fog at CTIA. The first step towards realising this aim is to provide aviation forecasters with a comprehensive fog climatology that encompasses all aspects of fog: from the seasonal characteristics, to detail regarding the types of fog that frequently occur, synoptic circulations associated with fog and characteristics of the vertical profile of the lower troposphere and boundary layer in which fog forms. Fog types at CTIA are classified by means of an objective hierarchical classification method that takes the formation mechanisms of fog into consideration. Self Organising Maps (SOMs) are used as a synoptic typing method, to determine the synoptic circulations that are most frequently associated with fog at CTIA. Case studies are presented to illustrate the formation mechanisms of 5 different fog types by means of the synoptic circulation, surface observations, satellite imagery and atmospheric soundings. Conclusions drawn from these case studies can assist forecasters with the identification of potential fog events in advance. It is recommended that climatology and case study results be made available to aviation forecasters at CTIA and that similar studies be conducted for all international airports in South Africa that are frequently affected by fog. Copyright / Dissertation (MSc)--University of Pretoria, 2011. / Geography, Geoinformatics and Meteorology / unrestricted
48

FOG COLLECTORS AND SUSTAINABLE DEVELOPMENT

Diehl, Rebecca 27 April 2010 (has links)
No description available.
49

Elucidating the Space-Time Structure of Low Level Warm Season Precipitation Processes in the Southern Appalachian Mountains Using Models and Observations

Wilson, Anna Maria January 2016 (has links)
<p>Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.</p> / Dissertation
50

Experiment Station Road

Mansfield, Gwen 22 May 2006 (has links)
Experiment Station Road is an original work of fiction serving as a collection of short stories set in Hayford, Oregon and Las Vegas in 1962-1972. Each story presents the point of view of a resident in Hayford. The stories are written to function independently, but when read as a collection present insight to cultural diversity, intricate relationships and the ignorance of prejudice.

Page generated in 0.0581 seconds