Spelling suggestions: "subject:"fonction dde répartition"" "subject:"fonction dee répartition""
1 |
Estimation non-paramétrique de la fonction de répartition et de la densitéHaddou, Mohammed January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Estimation et inférence non paramétriques basées sur les polynômes de BernsteinBelalia, Mohamed January 2016 (has links)
Dans la première partie de cette thèse, nous avons proposé des tests non paramétriques d'indépendance entre des variables aléatoires continues. Les tests proposés sont basés sur la fonction de copule empirique de Bernstein et la fonction de densité de copule de Bernstein. La deuxième partie, nous avons abordé le problème de l’estimation non paramétrique de la fonction de densité de probabilité conditionnelle et la fonction de répartition conditionnelle basée sur une représentation polynomiale de Bernstein. Les estimateurs proposés ont été utilisés pour estimer la fonction de régression et la fonction de quantile conditionnelle. Les propriétés asymptotiques de ces estimateurs ont été établies. Finalement, une étude de simulation est menée pour montrer la performance de nos estimateurs, soit sur des exemples simulés ou bien des données réelles.
|
3 |
Apports bioinformatiques et statistiques à l'identification d'inhibiteurs du récepteur MET / Bioinformatics and statistical contributions to the identification of inhibitors for the MET receptorApostol, Costin 21 December 2010 (has links)
L’effet des polysaccharides sur l’interaction HGF-MET est étudié à l’aide d’un plan d’expérience comportant plusieurs puces à protéines sous différentes conditions d’expérimentation. Le but de l’analyse est la sélection des meilleurs polysaccharides inhibiteurs de l’interaction HGF-MET. D’un point de vue statistique c’est un problème de classification. Le traitement informatique et statistique des biopuces obtenues nécessite la mise en place de la plateforme PASE avec des plug-ins d’analyse statistique pour ce type de données. La principale caractéristique statistique de ces données est le caractère de répétition : l’expérience est répétée sur 5 puces et les polysaccharides, au sein d’une même puce, sont répliqués 3 fois. On n’est donc plus dans le cas classique des données indépendantes globalement, mais de celui d’une indépendance seulement au niveau intersujets et intrasujet. Nous proposons les modèles mixtes pour la normalisation des données et la représentation des sujets par la fonction de répartition empirique. L’utilisation de la statistique de Kolmogorov-Smirnov apparaît naturelle dans ce contexte et nous étudions son comportement dans les algorithmes de classification de type nuées dynamique et hiérarchique. Le choix du nombre de classes ainsi que du nombre de répétitions nécessaires pour une classification robuste sont traités en détail. L’efficacité de cette méthodologie est mesurée sur des simulations et appliquée aux données HGF-MET. Les résultats obtenus ont aidé au choix des meilleurs polysaccharides dans les essais effectués par les biologistes et les chimistes de l’Institut de Biologie de Lille. Certains de ces résultats ont aussi conforté l’intuition des ces chercheurs. Les scripts R implémentant cette méthodologie sont intégrés à la plateforme PASE. L’utilisation de l’analyse des données fonctionnelles sur ce type de données fait partie des perspectives immédiates de ce travail. / The effect of polysaccharides on HGF-MET interaction was studied using an experimental design with several microarrays under different experimental conditions. The purpose of the analysis is the selection of the best polysaccharides, inhibitors of HGF-MET interaction. From a statistical point of view this is a classification problem. Statistical and computer processing of the obtained microarrays requires the implementation of the PASE platform with statistical analysis plug-ins for this type of data. The main feature of these statistical data is the repeated measurements: the experiment was repeated on 5 microarrays and all studied polysaccharides are replicated 3 times on each microarray. We are no longer in the classical case of globally independent data, we only have independence at inter-subjects and intra-subject levels. We propose mixed models for data normalization and representation of subjects by the empirical cumulative distribution function. The use of the Kolmogorov-Smirnov statistic appears natural in this context and we study its behavior in the classification algorithms like hierarchical classification and k-means. The choice of the number of clusters and the number of repetitions needed for a robust classification are discussed in detail. The robustness of this methodology is measured by simulations and applied to HGF-MET data. The results helped the biologists and chemists from the Institute of Biology of Lille to choose the best polysaccharides in tests conducted by them. Some of these results also confirmed the intuition of the researchers. The R scripts implementing this methodology are integrated into the platform PASE. The use of functional data analysis on such data is part of the immediate future work.
|
4 |
Sur la commande de satellites à entrées saturantesBoada, Josep 10 December 2010 (has links) (PDF)
La théorie de la commande a évolué de façon significative dans le domaine de l'automatique non-linéaire. Cependant, les méthodes utilisées actuellement dans l'industrie aérospatiale sont le plus souvent basées sur des techniques de commande linéaire. Les spécifications, toujours plus exigeantes en termes de fiabilité et performance, imposent l'utilisation de techniques de plus en plus complexes. Ainsi, l'industrie cherche des solutions dans les nouvelles techniques de la théorie de la commande non-linéaire. En particulier, la limitation des actionneurs représente un phénomène non-linéaire commun dans la plupart des systèmes physiques. Des actionneurs saturés peuvent engendrer la dégradation de la performance, l'apparition de cycles limites ou d'états d'équilibre non désirés et même l'instabilité du système bouclé. Le but de la thèse est d'adapter et de développer les techniques de synthèse anti-windup à la commande de haute précision des axes angulaires et linéaires de satellites. Dans le domaine spatial, cet objectif se retrouve dans les missions de commande en accélération et aussi du vol en formation. Ces missions utilisent des propulseurs de haute précision où leur capacité maximale est très basse. Ces systèmes propulsifs présentent une modélisation particulière. Des fonctions de répartition adaptées à la synthèse anti-windup ont été étudiées. De plus, en tenant compte de l'état de l'art de la synthèse anti-windup, il y a un vrai besoin d'utiliser des techniques de symétrisation pour la fonction saturation. Le but principal de ce travail consiste à utiliser les techniques développées sur une application aérospatiale. A titre d'exemple, une stratégie complète est proposée afin de contrôler l'attitude et la position relative d'une mission de vol en formation.
|
5 |
Théorèmes limites fonctionnels et estimation de la densité spectrale pour des suites stationnaires.Dede, Sophie 26 November 2009 (has links) (PDF)
L'objet de ma thèse est l'étude du comportement de certaines distances entre la mesure empirique d'un processus stationnaire et sa loi marginale (distance de type Cramér-Von Mises ou de type Wasserstein), dans le cas de variables aléatoires dépendantes au sens large, incluant par exemple, certains systèmes dynamiques. Nous établissons, dans un second chapitre, un principe de déviations modérées, sous des conditions projectives, pour une suite stationnaire de variables aléatoires bornées à valeurs dans un espace de Hilbert H, que ce soit pour un processus adapté ou non. Parmi les applications, nous avons travaillé, non seulement à l'étude de la statistique de Cramér-Von Mises, mais aussi sur les fonctions de processus linéaires (importantes dans les problèmes de prédiction) et les chaines de Markov stables. Dans le troisième chapitre, nous donnons un Théorème Limite Central pour des suites stationnaires ergodiques de différences de martingales dans L^1. Puis, par une approximation par des différences de martingales, nous en déduisons un Théorème Limite Central pour des suites stationnaires ergodiques de variables aléatoires à valeurs dans L^1, et satisfaisant des conditions projectives. Ceci nous permet d'obtenir des résultats sur le comportement asymptotique de statistiques du type distance de Wasserstein pour une importante classe de suites dépendantes. En particulier, les résultats sont appliquées à l'étude de systèmes dynamiques, ainsi qu'à celle des processus linéaires causaux. Pour finir, afin de construire des intervalles de confiance asymptotiques pour la moyenne d'une suite stationnaire à partir du Théorème Limite Central, nous proposons un estimateur lissé de la densité spectrale. Dans ce dernier chapitre, nous donnons des critères projectifs pour la convergence dans L^1 d'un estimateur lissé de la densité spectrale. Cela nous permet via un Théorème Limite Central d'avoir des régions de confiance pour les paramètres dans un modèle de régression paramétrique.
|
6 |
Un test d'adéquation global pour la fonction de répartition conditionnelleFERRIGNO, Sandie 17 December 2004 (has links) (PDF)
Soient X et Y , deux variables aléatoires. De nombreuses procédures statistiques permettent d'ajuster un modèle à ces données dans le but d'expliquer Y à partir de X. La mise en place d'un tel modèle fait généralement appel à diverses hypothèses que <br />l'on doit valider pour justifier son utilisation. Dans ce travail, on propose une approche globale où toutes les hypothèses faites pour asseoir ce modèle sont testées simultanément. <br />Plus précisément, on construit un test basé sur une quantité qui permet de canaliser toute l'information liant X à Y : la fonction de répartition conditionnelle de Y sachant (X = x) définie par F(y|x)=P(Y<=y|X=x). Notre test compare la valeur prise par l'estimateur polynômial local de F(y|x) à une estimation paramétrique du modèle supposé et rejette sa <br />validité si la distance entre ces deux quantités est trop grande. Dans un premier temps, on considère le cas où la fonction de répartition supposée est entièrement spécifiée et, dans <br />ce contexte, on établit le comportement asymptotique du test. Dans la deuxième partie du travail, on généralise ce résultat au cas plus courant en pratique où le modèle supposé contient un certain nombre de paramètres inconnus. On étudie ensuite la puissance locale du test en déterminant son comportement asymptotique local sous des suites d'hypothèses contigües. Enfin, on propose un critère de choix de la fenêtre d'ajustement qui intervient lors de l'étape d'estimation polynômiale locale de la fonction de répartition conditionnelle.
|
7 |
Estimation de régularité locale / Local regularity estimationServien, Rémi 12 March 2010 (has links)
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment à l'aide d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique. / The goal of this thesis is to study the local behavior of a probability measure, using a local regularity index. In the first part, we establish the asymptotic normality of the nearest neighbor density estimate. In the second, we define a mode estimator under weakened hypothesis. We show that the regularity index interferes in this two problems. Finally, we construct in a third part various estimators of the regularity index from estimators of the distribution function, which we achieve a review.
|
8 |
Contributions à l’estimation à noyau de fonctionnelles de la fonction de répartition avec applications en sciences économiques et de gestion / Contribution to kernel estimation of functionals of the distribution function with applications in economics and managementMadani, Soffana 29 September 2017 (has links)
La répartition des revenus d'une population, la distribution des instants de défaillance d'un matériel et l'évolution des bénéfices des contrats d'assurance vie - étudiées en sciences économiques et de gestion – sont liées a des fonctions continues appartenant à la classe des fonctionnelles de la fonction de répartition. Notre thèse porte sur l'estimation à noyau de fonctionnelles de la fonction de répartition avec applications en sciences économiques et de gestion. Dans le premier chapitre, nous proposons des estimateurs polynomiaux locaux dans le cadre i.i.d. de deux fonctionnelles de la fonction de répartition, notées LF et TF , utiles pour produire des estimateurs lisses de la courbe de Lorenz et du temps total de test normalisé (scaled total time on test transform). La méthode d'estimation est décrite dans Abdous, Berlinet et Hengartner (2003) et nous prouvons le bon comportement asymptotique des estimateurs polynomiaux locaux. Jusqu'alors, Gastwirth (1972) et Barlow et Campo (1975) avaient défini des estimateurs continus par morceaux de la courbe de Lorenz et du temps total de test normalisé, ce qui ne respectait pas la propriété de continuité des courbes initiales. Des illustrations sur données simulées et réelles sont proposées. Le second chapitre a pour but de fournir des estimateurs polynomiaux locaux dans le cadre i.i.d. des dérivées successives des fonctionnelles de la fonction de répartition explorées dans le chapitre précédent. A part l'estimation de la dérivée première de la fonction TF qui se traite à l'aide de l'estimation lisse de la fonction de répartition, la méthode d'estimation employée est l'approximation polynomiale locale des fonctionnelles de la fonction de répartition détaillée dans Berlinet et Thomas-Agnan (2004). Divers types de convergence ainsi que la normalité asymptotique sont obtenus, y compris pour la densité et ses dérivées successives. Des simulations apparaissent et sont commentées. Le point de départ du troisième chapitre est l'estimateur de Parzen-Rosenblatt (Rosenblatt (1956), Parzen (1964)) de la densité. Nous améliorons dans un premier temps le biais de l'estimateur de Parzen-Rosenblatt et de ses dérivées successives à l'aide de noyaux d'ordre supérieur (Berlinet (1993)). Nous démontrons ensuite les nouvelles conditions de normalité asymptotique de ces estimateurs. Enfin, nous construisons une méthode de correction des effets de bord pour les estimateurs des dérivées de la densité, grâce aux dérivées d'ordre supérieur. Le dernier chapitre s'intéresse au taux de hasard, qui contrairement aux deux fonctionnelles de la fonction de répartition traitées dans le premier chapitre, n'est pas un rapport de deux fonctionnelles linéaires de la fonction de répartition. Dans le cadre i.i.d., les estimateurs à noyau du taux de hasard et de ses dérivées successives sont construits à partir des estimateurs à noyau de la densité et ses dérivées successives. La normalité asymptotique des premiers estimateurs est logiquement obtenue à partir de celle des seconds. Nous nous plaçons ensuite dans le modèle à intensité multiplicative, un cadre plus général englobant des données censurées et dépendantes. Nous menons la procédure à terme de Ramlau-Hansen (1983) afin d'obtenir les bonnes propriétés asymptotiques des estimateurs du taux de hasard et de ses dérivées successives puis nous tentons d'appliquer l'approximation polynomiale locale dans ce contexte. Le taux d'accumulation du surplus dans le domaine de la participation aux bénéfices pourra alors être estimé non parametriquement puisqu'il dépend des taux de transition (taux de hasard d'un état vers un autre) d'une chaine de Markov (Ramlau-Hansen (1991), Norberg (1999)) / The income distribution of a population, the distribution of failure times of a system and the evolution of the surplus in with-profit policies - studied in economics and management - are related to continuous functions belonging to the class of functionals of the distribution function. Our thesis covers the kernel estimation of some functionals of the distribution function with applications in economics and management. In the first chapter, we offer local polynomial estimators in the i.i.d. case of two functionals of the distribution function, written LF and TF , which are useful to produce the smooth estimators of the Lorenz curve and the scaled total time on test transform. The estimation method is described in Abdous, Berlinet and Hengartner (2003) and we prove the good asymptotic behavior of the local polynomial estimators. Until now, Gastwirth (1972) and Barlow and Campo (1975) have defined continuous piecewise estimators of the Lorenz curve and the scaled total time on test transform, which do not respect the continuity of the original curves. Illustrations on simulated and real data are given. The second chapter is intended to provide smooth estimators in the i.i.d. case of the derivatives of the two functionals of the distribution function presented in the last chapter. Apart from the estimation of the first derivative of the function TF with a smooth estimation of the distribution function, the estimation method is the local polynomial approximation of functionals of the distribution function detailed in Berlinet and Thomas-Agnan (2004). Various types of convergence and asymptotic normality are obtained, including the probability density function and its derivatives. Simulations appear and are discussed. The starting point of the third chapter is the Parzen-Rosenblatt estimator (Rosenblatt (1956), Parzen (1964)) of the probability density function. We first improve the bias of this estimator and its derivatives by using higher order kernels (Berlinet (1993)). Then we find the modified conditions for the asymptotic normality of these estimators. Finally, we build a method to remove boundary effects of the estimators of the probability density function and its derivatives, thanks to higher order derivatives. We are interested, in this final chapter, in the hazard rate function which, unlike the two functionals of the distribution function explored in the first chapter, is not a fraction of two linear functionals of the distribution function. In the i.i.d. case, kernel estimators of the hazard rate and its derivatives are produced from the kernel estimators of the probability density function and its derivatives. The asymptotic normality of the first estimators is logically obtained from the second ones. Then, we are placed in the multiplicative intensity model, a more general framework including censored and dependent data. We complete the described method in Ramlau-Hansen (1983) to obtain good asymptotic properties of the estimators of the hazard rate and its derivatives and we try to adopt the local polynomial approximation in this context. The surplus rate in with-profit policies will be nonparametrically estimated as its mathematical expression depends on transition rates (hazard rates from one state to another) in a Markov chain (Ramlau-Hansen (1991), Norberg (1999))
|
Page generated in 0.1037 seconds