• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 16
  • 15
  • 13
  • 13
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Trickle-down ecohydrology : complexity of rainfall interception and net precipitation under forest canopies

Allen, Scott T. (Scott Thomas) 12 June 2012 (has links)
Rainfall interception is a primary control over the moisture input to a forested ecosystem through the partitioning of precipitation into throughfall, stemflow, and an evaporated component (i.e. the interception loss). Rainfall interception is a spatially and temporally varying process at multiple scales, but heterogeneity in interception processes are poorly understood and poorly described in the literature. We need to know how net precipitation varies in ecosystems because natural systems are driven by non-linear ecohydrological processes where mean values cannot capture localized effects or the cumulative consequences associated with an extremely heterogeneous input. In this thesis, we present two studies that investigate the heterogeneity of interception loss and throughfall in a forested catchment in the western Cascades range of Oregon. In one study, we examined the spatio-temporal patterns among point measurements of throughfall depth and isotopic composition to determine the cause of isotopic differences between throughfall and rainfall. Our results indicated that the residual moisture retained on the canopy from previous events plays a major role in determining the isotopic composition of the next event's throughfall. Differences between the isotopic composition of throughfall samples could indicate further partitioning of throughfall into various flow-paths from the canopy. The second project examined the question of how vegetation variability and terrain complexity drive interception loss heterogeneity at the whole-catchment scale. We applied a simple interception model to a watershed gridded at a 50 m resolution to investigate the relative importance of topographic and vegetative controls over the spatial variability of interception loss. We found that storm characteristics are crucial regarding the impact of spatial heterogeneities in vegetation and evaporation rates. In the Pacific Northwest climate, interception loss is not highly variable for the majority of the year because the annual precipitation is dominated by large storms with low interception losses. However, the net precipitation input to a watershed becomes extremely heterogeneous in the summer due to high interception loss variability. Summer interception loss could be an important control over the spatial variability of the availability of moisture, coinciding with when vegetation is most water-limited. / Graduation date: 2013
62

The effect of the spatial scale of tree harvesting on woody seedling establishment and tree dynamic at Ongoye Forest Reserve.

Louw, Sharon Lilla. January 2010
Subsistence harvesting pressure in most African countries focuses on the small and mostly unreproductive trees found in the understorey stratum and can have potentially insidious ecological effects. Harvest intensities at Ongoye Forest Reserve (OFR) vary significantly across the forest (range = 87 - 567 stumps ha-1), with harvesting focussed exclusively on poles from tree species that grow only in the understorey. Growing evidence indicates that seedling establishment from the pool of species available beneath a closed canopy is greatly influenced by the differential ability of species to take advantage of the short burst of resources in newly-created understorey gaps. Seedling dynamics in these gaps may determine forest tree diversity and dynamics and consequently harvest gaps have the potential to significantly affect natural forest dynamics. This study examined seedling establishment beneath intact understorey and within artificially created understorey gaps of different sizes (single stem gaps, two stem gaps, four stem gaps, eight stem gaps and control ‘gap’, where no stems were removed) that simulated different spatial scales of harvesting intensity of understorey trees. This experiment examined the proposition that successful seedling establishment and natural succession is strongly dependent on the scale of harvesting. Seedling abundance, species richness, irradiance (photosynthetically active radiation and the red to far-red ratio), soil nutrient composition and herbaceous layer cover was measured in each gap size in 2005 before harvesting, and again in 2007. The mean seedling abundance was not significantly different among gap treatments, although there was a trend towards more seedlings in 2005 than 2007. Seedling abundance in all gaps was greater than at control sites beneath the intact understorey. There was a continuous increase in seedling richness in 2007. An average species richness of 4.3 was recorded in the control sites, beneath a shaded understorey. Here, seedling richness increased by 18.24% with the removal of a single understorey tree (Gap 1). Species richness increased with increasing experimental gap size increased so that the greatest mean species richness (6.2 species) was recorded where eight neighbouring trees were removed (Gap 8). Light transmission reaching the seedling stratum was greater in larger gaps and there was a trend towards more seedlings and greater species richness in the higher light environments of such gaps. Soil nutrient levels did not influence seedling abundance and species richness in gaps. The herbaceous layer suppressed seedling establishment. In the largest gaps (115.4m2) created by harvesting, seedling composition was more deterministic than in small gaps where seedling establishment and density was random, accordingly there were more species in larger gaps from a more defined species assemblage. Current harvesting levels of pole-sized understorey trees, where only small gaps are created in the understorey, are unlikely to alter forest dynamics and species composition at OFR. This study demonstrates that harvesting eight adjacent trees crosses the harvest intensity threshold between sustainable natural tree dynamics and a potential successional shift to an alternative state. Clearly, for natural dynamics to be maintained harvesting intensities will have to be regulated. / http://hdl.handle.net/10413/631 / Thesis (M.Env.Dev.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
63

The structure of single- and mixed-species, second-growth stands of Western hemlock and Western redcedar

Klinka, Karel, Varga, Pal, Montigny, Louise E. M. de, Chourmouzis, Christine January 2001 (has links)
The structure of a forest stand is characterized by: (a) species composition, (b) age, (c) size (diameter and height), and (d) spatial (horizontal and vertical) arrangement of the trees. Depending on the species, site, and disturbance history, the stand structure varies with time, thus providing a snapshot of a particular development stage. Research on growth and stand structure has shown that the spatial distribution of trees is one of the key determinants of stand productivity. Forest inventories and ecological surveys carried out in British Columbia (BC) have shown that the structure of naturally established, unmanaged stands varies from simple (single-species, single-storied, and even-aged) to complex (multi-species, multi-storied, and uneven-aged). Only a few studies have quantitatively characterized this range of structural complexity, with nearly all studies focusing on old-growth stands. BC forest policy requires that harvested areas be regenerated with a mixture of tree species whenever a mixture is suited to the site. This policy is based upon the assumption that under appropriate conditions, increases in stand productivity, reliability, and/or biodiversity can be attained in mixed-species stands. This assumption has not yet been tested for forest ecosystems. One mechanism by which different tree species can reduce crown competition for light is through vertical separation (the development of multiple canopy strata). Canopy stratification is not easily recognized in mixed-species stands, particularly when species have similar shade tolerance and height growth patterns, and no quantitative methods have been developed to detect stratification. The diameter frequency distribution of two-storied stands have been characterized by inverted J-shaped as well as modal curves. Although it would be more appropriate to characterize stand structure by height frequency distributions, these distributions have not been developed. We suggest that (i) a stand is stratified if there are distinct, quantitatifiable modes in the size distribution; either diameter, height, or crown height, and (ii) height or crown height distributions will be the most sensitive measures. To characterize the structure of western hemlock (Tsuga heterophylla (Raf.) Sarg.) (Hw) and western redcedar (Thuja plicata Donn ex D. Don in Lamb.) (Cw) second-growth stands, and to investigate its influence on tree growth, we (1) described and compared size (diameter, height, and crown height) frequency distributions in single- and mixed-species stands, (2) determined whether mixed-species stands develop a stratified canopy, and (3) examined whether interactions between hemlock and redcedar affect tree growth.
64

Estimating foliar and wood lignin concentrations, and leaf area index (LAI) of Eucalyptus clones in Zululand usig hyperspectral imagery.

Mthembu, Ingrid Bongiwe. January 2006 (has links)
To produce high quality paper, lignin should be removed from the pulp. Quantification of lignin concentrations using standard wet chemistry is accurate but time consuming and costly, thus not appropriate for a large number of samples. The ability of hyperspectral remote sensing to predict foliar lignin concentrations could be utilized to estimate wood lignin concentrations if meaningful relationships between wood and foliar chemistry are established. LAI (leaf area index) is a useful parameter that is incorporated into physiological models in forest assessment. Measuring LAI over vast areas is labour intensive and expensive; therefore, LAI has been correlated to vegetation indices using remote sensing. Broadband indices use average spectral information over broad bandwidths; therefore details on the characteristics of the forest canopy are compromised and averaged. Moreover, the broadband indices are known to be highly affected by soil background at low vegetation cover. The aim of this study is to determine foliar and wood lignin concentrations of Eucalyptus clones using hyperspectral lignin indices, and to estimate LAI of Eucalyptus clones from narrowband vegetation indices in Zululand, South Africa Twelve Eucalyptus compartments of ages between 6 and 9 years were selected and 5 trees were randomly sampled from each compartment. A Hyperion image was acquired within ten days of field sampling, SI and LAI measurements. Leaf samples were analyzed in the laboratory using the Klason method as per Tappi standards (Tappi, 1996-1997). Wood samples were analyzed for lignin concentrations using a NIRS (Near Infrared Spectroscopy) instrument. The results showed that there is no general model for predicting wood lignin concentrations from foliar lignin concentrations in Eucalyptus clones of ages between 6 and 9 years. Regression analysis performed for individual compartments and on compartments grouped according to age and SI showed that the relationship between wood and foliar lignin concentration is site and age specific. A Hyperion image was georeferenced and atmospherically corrected using ENVI FLAASH 4.2. The equation to calculate lignin indices for this study was: L1R= ~n5il: A'''''y . 1750 AI680 The relationship between the lignin index and laboratory-measured foliar lignin was significant with R2 = 0.79. This relationship was used to calculate imagepredicted foliar lignin concentrations. Firstly, the compartment specific equations were used to calculate predicted wood lignin concentrations from predicted foliar lignin concentrations. The relationship between the laboratorymeasured wood lignin concentrations and predicted wood lignin concentrations was significant with R2 = 0.91. Secondly, the age and site-specific equations were used to convert foliar lignin concentration to wood lignin concentrations. The wood lignin concentrations predicted from these equations were then compared to the laboratory-measured wood lignin concentrations using linear regression and the R2 was 0.79 with a p-value lower than 0.001. Two bands were used to calculate nine vegetation indices; one band from the near infrared (NIR) region and the other from the short wave infrared (SWIR). Correlations between the Vis and the LAI measurements were generated and . then evaluated to determine the most effective VI for estimating LAI of Eucalyptus plantations. All the results obtained were significant but the NU and MNU showed possible problems of saturation. The MNDVI*SR and SAVI*SR produced the most significant relationships with LAI with R2 values of 0.899 and 0.897 respectively. The standard error for both correlations was very low, at 0.080, and the p-value of 0.001. It was concluded that the Eucalyptus wood lignin concentrations can be predicted using hyperspectral remote sensing, hence wood and foliar lignin concentrations can be fairly accurately mapped across compartments. LAI significantly correlated to eight of the nine selected vegetation indices. Seven Vis are more suitable for LAI estimations in the Eucalyptus plantations in Zululand. The NU and MNU can only be used for LAI estimations in arid or semi-arid areas. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
65

Estimating the aboveground biomass of central African tropical forests at the tree, canopy and region level

Bastin, Jean-François 24 October 2014 (has links)
Human pressure on forest resources increased significantly during the past decades through land use and land use change, especially in the tropics where forest clearing is a major source of CO2 release in the atmosphere. Consequently, forests are the focus of international environmental policies and discussions aiming to reduce emissions from deforestation and forest degradation (i.e. REDD+). The capacity of participating countries to regularly provide accurate forests C stocks measurements at a national scale thus represents an important challenge to address. In dense forests, generally only the above ground biomass (AGB) is measured as it accounts for more than 50% of total C stocks. However, important gaps remain at each scale of measurement, i.e. from felled tree to regional mapping, with the resulting errors propagation through these different scales being probably the most concerning issue.<p><p>In the present work, we propose to address these issues by using a multi-scale approach in order to improve our global understanding of AGB variations in dense tropical forests of Central Africa. In particular, we studied (i) forest AGB prediction from remote-sensing textural analysis, (ii) the potential role of largest trees as predictor of the entire forest-stand AGB and (iii) intra- and inter-individual radial variation of wood specific gravity (WSG, i.e. oven-dry mass divided by its green volume) and its potential consequences on the estimation of the AGB of the tree. <p>First, we analyzed the potential use of textural analysis to predict AGB distribution based on very high spatial resolution satellite scenes. In particular, we used the Fast Fourier Transform Ordination (FOTO) method to predict AGB from heterogeneous forest stands of the Democratic Republic of the Congo (DRC). Here, based on 26 ground plots of 1-ha gathered from the field, plus a successful combination of Geoeye and Quickbird contrasted scenes, we were able to predict and to map AGB with a robust model (R² = 0.85; RMSE = 15%) based on textural gradients. <p>Secondly, the research of AGB indicators was focused on the dissection of the role played by largest trees. Here we found largest trees not only hold large share of forest carbon stock but they contain the print of most of forest-stand structure and diversity. Using a large dataset from western Cameroon to eastern DRC, we developed a non-linear model to predict forest carbon stock from the measurement of only a few large trees. We found the AGB of the 5 % largest stems allow to predict the AGB of the entire forest-stand yielding an R² of 0.87 at a regional scale. Focusing on largest trees species composition, we also showed only 5 % of species account for 50 % of total AGB.<p>In the end, we investigated inter- and intra-individual WSG variations. Despite recognized inter- and intra-specific variations along the radial axis, their ecological determinants and their consequences on trees aboveground biomass assessments remain understudied in tropical regions. To our knowledge, it has never been investigated in Africa. Using a 3-D X-Ray scanner, we studied the radial WSG variation of 14 canopy species of DRC tropical forests. Wood specific gravity variance along the radial profile was dominated by differences between species intercepts (~76%), followed by the differences between their slope (~11%) and between individual cores intercept (~10%). Residual variance was minimal (~3%). Interestingly, no differences were found in the comparison of mean WSG observed on the entire core and the mean WSG at 1-cm under the bark (intercept ~0; coefficient = 1.03). In addition, local values of WSG are strongly correlated with mean value in the global data base at species level. <p><p>I deeply believe these results favor the development of promising tools to map and to estimate accurately the AGB of tropical forest-stands. The information provided by largest trees on the entire forest-stand is particularly interesting both for developing new sampling strategies for carbon stocks monitoring and to characterize tropical forest-stand structure. In particular, our results should provide the opportunity to decrease current sampling cost while decreasing its main related uncertainties, and might also favor an increase of the current sampling coverage. <p> / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
66

Urban Trees as Sinks for Soot: Deposition of Atmospheric Elemental Carbon to Oak Canopies and Litterfall Flux to Soil

Rindy, Jenna 05 1900 (has links)
Elemental carbon (EC), a product of incomplete combustion of fossil fuels and biomass, contributes to climate warming and poor air quality. In urban areas, diesel fuel trucks are the main source of EC emissions from mobile sources. After emission, EC is deposited to receptor surfaces via two main pathways: precipitation (wet deposition) and directly as particles (dry deposition). Urban trees may play an important role in removing EC from the atmosphere by intercepting and delivering it directly to the soil. The goal of this research was to quantify the magnitude of EC retention in leaf waxes (in-wax EC) and EC fluxes to the soil via leaf litterfall in the City of Denton, Texas. Denton is a rapidly growing urban location in the Dallas-Fort Worth metropolitan area. A foliar extraction technique was used to determine EC retention in leaf waxes. Foliar samples were collected monthly, from April through July, from pairs of Quercus stellata (post oak, n=10) and Quercus virginiana (live oak, n = 10) trees. Samples were rinsed with water and chloroform in a two-step process to determine EC retained in leaf waxes. A Sunset OC/EC aerosol analyzer was utilized to analyze the EC content of extracts filtered onto quartz-fiber filters. From April through July, leaf litter was collected bi-weekly under 35 trees (20 post oak, 15 live oak), and oven dried to determine dry weight. EC retained by tree canopies was estimated by multiplying in-wax EC by canopy leaf area index, while EC flux to soil was estimated by multiplying in-wax EC by leaf litterfall mass. This study shows that through retention of EC in leaf waxes, urban tree canopies represent important short-term sinks for soot in urban areas.
67

Overstory density and disturbance impacts on the resilience of coniferous forests of western Oregon

Neill, Andrew R. (Andrew Rhodes) 09 March 2012 (has links)
A trait based approach was used to assess impacts of overstory density and thinning on understory vegetation components related to wildlife habitat. The relationship between overstory basal area and understory vegetation for species grouped by traits, such as production of flowers, fleshy-fruit and palatable leaves, was characterized in thinned and unthinned stands at seven Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in western Oregon six years following harvests. The ranges of overstory densities within thinned and unthinned stands represent gradients of resource availability and thinning disturbance. Lower overstory densities and thinnings were associated with improved ecosystem functions, specifically the provision of wildlife habitat, as evident by higher cover of flowering and fleshy-fruit and palatable leaf producing species. Greater cover of drought, fire and heat tolerant species in low density stands and after thinnings suggested that these ecosystem functions are more likely to be maintained under climate change conditions, indicating higher resilience. The response of specific functions and response types reflect the traits characteristic for each species group and the impact of these traits on sensitivity to resource availability and disturbances. Thus, the correlation between grouping criteria and the main gradients created by management activities can provide an indication of the expected vegetation response, and therefore the impact of management practices on resilience. / Graduation date: 2012

Page generated in 0.0642 seconds