• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 395
  • 171
  • 169
  • 55
  • 51
  • 42
  • 18
  • 15
  • 10
  • 10
  • 8
  • 7
  • 5
  • 5
  • 3
  • Tagged with
  • 1100
  • 244
  • 187
  • 136
  • 112
  • 108
  • 99
  • 96
  • 91
  • 86
  • 83
  • 81
  • 76
  • 73
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Sporto organizacijos žmogiškųjų išteklių formavimas sporto klube / Human resources development of sports club

Norvaišienė, Lina 06 September 2013 (has links)
Darbo objektas: žmogiškųjų išteklių formavimas sporto klube. Darbo tikslas: išanalizuoti žmogiškųjų išteklių formavimą sporto klube „X“. Darbo uždaviniai: 1. Atskleisti žmogiškųjų išteklių sampratos teorinius aspektus nustatant žmogiškųjų išteklių svarbą organizacijai; 2. Išanalizuoti žmogiškųjų išteklių formavimo esmę ir būtinumo teoriją; 3. Ištirti žmogiškųjų išteklių formavimą sporto klube „X“. Išvados: 1. Žmogiškieji ištekliai svarbus komponentas galintis prisidėti prie organizacijos konkurencinio pranašumo kūrimo. Žmogiškieji ištekliai yra kaip vieni sunkiausiai pasiekiamų arba apskritai nepasiekiamų bet kokio verslo konkurencinių pranašumų. Žmogiškieji ištekliai laikomi pagrindiniu organizacijos ištekliu, nes atskiri asmenys pritaiko vis kitus išteklius bei turi reikšmingos įtakos organizacijos pelningumui ir efektyvumui. 2. Žmogiškųjų išteklių formavimas yra būsimojo organizacijos personalo poreikio planavimas, įvertinantis tiek vidinę organizacijos veiklą, tiek išorės aplinkos veiksnius. Žmogiškųjų išteklių formavimas šiandien yra uždavinys kylantis dėl konkurencinės, besikeičiančios aplinkos, darbo jėgos stokos, nuolat kintančios demografinės situacijos ir vyriausybės spaudimo apsaugoti darbuotojus bei jų aplinką. Tradicinio žmonių išteklių planavimo modelio paskirtis – pasiekti balansą tarp darbo jėgos poreikio ir pasiūlos prognozėse. Paklausą apsprendžia organizacijos tikslai ir strategijos, aplinka ir personalo panaudojimo būdai organizacijoje. Darbo jėgos... [toliau žr. visą tekstą] / The object: forming human resources in sports club. The objective: to analyze the formation of human resources in sports club "X". Work tasks: 1. Reveal the theoretical human resources aspects determining importance of human resources in the organization; 2. To analyze the essence of the human resources development and the need for theory; 3. To investigate the forming of human resources in sports club "X". Conclusion: • Human resources are important component of which may contribute to an organization's competitive advantage creation. Human resources are one of the most difficult to reach, or generally inaccessible to any business competitive advantages. Human resources are seen as a major resource for the organization, as individuals adjust other resources and still have a significant impact on an organization's profitability and efficiency. • Human resource formation is the personnel need for future planning, assessing both the internal activities of the organization, and external environmental factors. Human resource forming today is a task stemming from the competitive, ever-changing environment, the lack of labor, constantly changing demographic situation and the pressure on the government to protect employees and the environment. The traditional human resource planning model designation - a balance between labor demand and supply projections. Demand is determined by the organization's goals and strategies, the environment and human uses of the organization. Labour... [to full text]
172

In-plane plane strain testing to evaluate formability of sheet steels used in tubular products

Kilfoil, Leo Joseph 28 September 2007 (has links)
In order to effectively and efficiently hydroform new automotive components, the formability of new tubular steels must be evaluated. Standard forming limit diagrams have been used for decades to evaluate and predict the formability of sheet steel formed along linear strain paths. However, tube hydroforming can present a problem since the pre-bending stage used in many hydroforming operations causes multiple non-linear strain paths. This thesis has modified a formability test method that deforms small-scale sheet steel samples in a single plane. The sample geometries were designed such that the strain paths achieved at the center of the samples were very near the plane strain condition. The four steels chosen for this study were: a deep drawing quality (DDQ), a high strength low alloy (HSLA) and two dual phase steels (DP600 and DP780). The plane strain formability for each of the four steels was tested in both the rolling and transverse directions. Three objective criteria were employed to evaluate and directly compare the formability of the four steels tested: difference in strain, difference in strain rate and local necking. The DDQ steel showed the highest formability followed in order by the HSLA, DP600 and DP780 steels. The repeatability in determining the forming limit strains using the difference in strain, the difference in strain rate and the local necking criteria for a 95% confidence interval was ± 1.5%, ± 1.2% and ± 3.2% engineering strain, respectively. The forming limit data collected for this thesis has been compared to results from full-scale tube hydroforming operations and free expansion tube burst tests carried out by researchers at the University of Waterloo on the same four materials. It was found that local necking results could be used to predict failure of hydroformed HSLA steel tubes with low levels of end-feed. However, this same method could only predict the failure of hydroformed DP600 steel tubes at higher levels of end-feed. The three objective criteria were not found to be suitable for predicting failure of free expansion tube burst tests. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2007-09-27 15:00:35.873
173

FRICTION AND EXTERNAL SURFACE ROUGHNESS IN SINGLE POINT INCREMENTAL FORMING: A study of surface friction, contact area and the ‘orange peel’ effect

Hamilton, Kelvin Allan Samuel 03 February 2010 (has links)
This work studied the effects of step size, angle, spindle speed, and feed rate on the external surface roughening, orange peel effect, observed in single point incremental forming (SPIF). Experimental results were used to estimate models to categorize the extent of orange peel roughening based on visual inspection and on surface roughness measurements. Tests were performed at very high rotational speeds and feed rates and showed various influences on surface roughness, thickness distribution, and grain size. Friction at the tool-sheet interface was also studied with a completely instrumented tool that measured and recorded torsion and forming forces through deformation strains. Coefficients of friction for each part were determined and through statistical analysis, the influence of each of the following forming parameters was established: material thickness, formed shape, tool size, step size, forming speeds (feed rate and rotational speed), and forming angle. Multidimensional response surfaces were generated to show when and under what condition friction was minimized. A new contact zone representation for SPIF was also established. This formulation used common forming parameters and geometric considerations to determine the contacting zone between the sheet and the tool. Area models were proposed for both the tangential and torsional component of friction in SPIF. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2010-02-01 16:47:17.249
174

Simulation of a sheet metal leading edge for a three piece vane using bending and deep-drawing

Zaikovska, Liene January 2013 (has links)
No description available.
175

A Study on Laser Forming Processes with Finite Element Analysis

Jung, Hyung Chul January 2006 (has links)
Laser forming is an innovative technique that uses a defocused laser beam to form sheet metal by thermal stresses rather than external forces. Promising potential applications of laser forming include rapid prototyping, straightening, aligning and adjusting of macro/micro-metallic components. Research to-date on laser forming has been largely focused, theoretically and experimentally, on the problem of characterization of process parameters on the forming results, and computational simulations of laser forming remain limited only providing the insight into the process. This study investigates the laser forming processes using the finite element analysis with respect to material responses during the processes, including complex processes, process optimization, process reliability and the effects of thermal and mechanical material properties. The first part of this thesis describes a nonlinear transient three-dimensional heat transfer finite element model and a rate dependent three-dimensional deformation model, which are developed for the laser forming simulations. Simulations are performed using an indirect coupled thermal-structural method for the processes of a straight-line heating, a circle-line heating, and a laser micro-adjustment. The thermo-mechanical behaviours during the straight-line heating process are presented in terms of temperature, stress and strain, and displacement distributions. The emphasis in the circle-line heating simulations is placed on the characterization of the quality of the deformed geometry by obtaining the radial and circumferential waviness. The micron size movements induced by laser point heating are focused the simulations of the micro-adjustment process. Simulation results are validated by comparison with published data or correlation to engineering point of view. The second part of this thesis presents the development of an effective method to determine optimum process parameters in laser forming. For the process optimization, design optimisation techniques are introduced into the finite element analysis of the laser forming process. The optimum parameter values to produce a predefined bend angle of 3° in the straight-line heating process are sought by two optimization procedures - one is the procedure involving the non-gradient method and the other is the gradient-based method. Optimum values of laser power, feed rate, beam diameter and number of passes are determined to produce a predefined bend angle in a multiple straight-line heating process using the two optimization procedures. A more suitable optimisation method for laser forming is chosen, which is used for a new optimisation problem to generate a maximum bend angle in a single pass of laser forming. In the third part of this thesis, a strategy to assess the reliability of the laser forming process is established by employing a well-known reliability analysis method, the Monte Carlo simulation. Robustness of the straight-line heating process of producing 3° with the optimum parameters determined by process optimization is evaluated with regard to the uncertain input variables of laser power, feed rate, plate thickness and coefficient of thermal expansion via the Monte Carlo simulations based on the finite element simulations of the process. The final part of this thesis identifies the effects of material properties on the bend angle resulting from laser forming. Process sensitivity to the properties of coefficient of thermal expansion, thermal conductivity, specific heat capacity and elastic modulus is investigated by measuring the Pearson product-moment correlation coefficient between the properties and the bend angle, which are based on the Monte Carlo simulations of laser forming. The conclusion is that the developed finite element models contribute to a better understanding of the laser forming process, and the optimization procedure is able to be used for straightening, aligning and adjusting of components.
176

THE USE OF SELECTIVE ANNEALING FOR SUPERPLASTIC FORMING OF MG AZ31 ALLOY

Cusick, Michael Christopher 01 January 2007 (has links)
A recent study on the Post-Formed properties of Superplastically Formed Magnesium AZ31B has shown that the heating time prior to testing has a major effect on the Post Forming properties of the superplastically material. To this point, there has been very little examination into the effect of pre-heating or annealing on superplastic forming (SPF) properties. In this work, the effects of annealing prior to the SPF of Mg AZ31 alloy were examined. Both high temperature SPF tensile and bulge specimens were formed after annealing. Multiple annealing temperatures were examined to produce specimens with grain sizes ranging from 8 andamp;igrave;m to 15 andamp;igrave;m for comparison with traditional SPF results. The results show that the effect of annealing can be suitable for the improvement of thinning and possibly the forming time of superplastically formed Magnesium alloys through the control of the microstructure.
177

Propagation of a vapor explosion through a linear array of tin droplets in water

Ciccarelli, Gaby January 1988 (has links)
No description available.
178

An Experimental and Numerical Investigation of the Steady State Forces in Single Incremental Sheet Forming

Nair, Mahesh 2011 August 1900 (has links)
Incremental sheet forming process is a relatively new method of forming which is increasingly being used in the industry. Complex shapes can be manufactured using this method and the forming operation doesn't require any dies. High strains of over 300 % can also be achieved. Incremental sheet forming method is used to manufacture many different components presently. Prototype examples include car headlights, tubs, train body panels and medical products. The work done in the thesis deals with the prediction of the steady state forces acting on the tool during forming. Prediction of forces generated would help to design the machine against excessive vibrations. It would help the user to protect the tool and the material blank from failure. An efficient design ensures that the tool would not get deflected out of its path while forming, improving the accuracy of the finished part. To study the forces, experiments were conducted by forming pyramid and cone shapes. An experimental arrangement was set up and experimental data was collected using a data acquisition system. The effect that the various process parameters, like the thickness of the sheet, wall angle of the part and tool diameter had on the steady state force were studied. A three dimensional model was developed using commercial finite element software ABAQUS using a new modeling technique to simulate the deformation of the sheet metal blank during incremental sheet forming. The steady state forces generated for any shape, with any set of parameters used, could be predicted using the numerical model. The advantage of having a numerical model is that the forces can be predicted without doing experiments. The model was used to predict the steady state forces developed during forming of pyramid and cone shapes. The results were compared and were seen to be reasonably close to the experimental results. Later, the numerical model was validated by forming arbitrary shapes and comparing the value obtained from simulations to the value of the measured steady state forces. The results obtained from the numerical model were seen to match very well with the experimental forces for the new shapes. The numerical model developed using the new technique was seen to predict forces to a reasonable extent with less computational time as compared to the models currently available.
179

Wear mechanisms in sheet metal forming : Effects of tool microstructure, adhesion and temperature

Gåård, Anders January 2008 (has links)
The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of lubricants, in combination with the introduction of high and ultrahigh-strength sheet materials, continuously increases the demands on the forming tools. The major cause for tool failure during the forming process is transfer and accumulation of sheet material on the tool surfaces, generally referred to as galling. The adhered material creates unstable frictional conditions and scratching of the tool/sheet interface. To provide the means of forming new generations of sheet materials, development of new tool materialswith improved galling resistance is required, which may include tailored microstructures introducing specific carbides and nitrides, coatings and improved surface finish. In the present work, the galling wear mechanisms in real forming operations have been studied and emulated at a laboratory scale by developing a test equipment. The wear mechanisms, identified in the real forming process, were distinguished into a sequence of events. At the initial stage, local adhesive wear of the sheets led to transfer of sheet material to the tool surfaces. Successive forming operations resulted in growth of the transfer layer with initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated withgross macroscopic damage. The wear process was successfully repeated in the laboratory test equipment in sliding between several tool materials, ranging from cast iron and conventional ingot cast tool steels, to advanced powder metallurgy tool steel, sliding against medium and high-strength steel sheets. By use of the test equipment, selected tool materials were ranked regarding galling resistance. The controlling mechanism for galling in sheet metal forming is adhesion. The initial sheet material transfer was found to occur, preferably, to the metallic matrix of the tool steels. Hence, the carbides in the particular steels appeared less prone to adhesion as compared to the metallic matrix. Therefore, an improved galling resistance was observed for a tool steel comprising a high amount of small homogeneously distributed carbides offering a low-strength interface to the transferred sheet material.Further, atomic force microscopy showed that nanoscale adhesion was influenced by temperature, with increasing adhesion as temperature increases. A similar dependence was observed at the macroscale where increasing surface temperature led to initiation of severe adhesive wear. The results were in good agreement to the nano scale observations and temperature-induced high adhesion was suggested as a possible mechanism.
180

Modeling and optimization of superplastic forming of Weldlite(TM) 049 sheet products /

Kridli, Ghassan Tahsin, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / TM in title is superscripted on title page. Typescript. Vita. Includes bibliographical references (leaves 100-103). Also available on the Internet.

Page generated in 0.0456 seconds