1 |
Return on Investment Analysis for Facility LocationMyung, Young-soo, Tcha, Dong-wan 05 1900 (has links)
We consider how the optimal decision can be made if the optimality criterion of maximizing profit changes to that of maximizing return on investment for the general uncapacitated facility location problem. We show that the inherent structure of the proposed model can be exploited to make a significant computational reduction.
|
2 |
Exact Methods In Fractional Combinatorial OptimizationUrsulenko, Oleksii 2009 December 1900 (has links)
This dissertation considers a subclass of sum-of-ratios fractional combinatorial optimization
problems (FCOPs) whose linear versions admit polynomial-time exact algorithms.
This topic lies in the intersection of two scarcely researched areas of fractional
programming (FP): sum-of-ratios FP and combinatorial FP. Although not extensively
researched, the sum-of-ratios problems have a number of important practical applications
in manufacturing, administration, transportation, data mining, etc.
Since even in such a restricted research domain the problems are numerous,
the main focus of this dissertation is a mathematical programming study of the
three, probably, most classical FCOPs: Minimum Multiple Ratio Spanning Tree
(MMRST), Minimum Multiple Ratio Path (MMRP) and Minimum Multiple Ratio
Cycle (MMRC). The first two problems are studied in detail, while for the other one
only the theoretical complexity issues are addressed.
The dissertation emphasizes developing solution methodologies for the considered
family of fractional programs. The main contributions include: (i) worst-case
complexity results for the MMRP and MMRC problems; (ii) mixed 0-1 formulations
for the MMRST and MMRC problems; (iii) a global optimization approach for the
MMRST problem that extends an existing method for the special case of the sum of
two ratios; (iv) new polynomially computable bounds on the optimal objective value
of the considered class of FCOPs, as well as the feasible region reduction techniques based on these bounds; (v) an efficient heuristic approach; and, (vi) a generic global
optimization approach for the considered class of FCOPs.
Finally, extensive computational experiments are carried out to benchmark performance
of the suggested solution techniques. The results confirm that the suggested
global optimization algorithms generally outperform the conventional mixed 0{1 programming
technique on larger problem instances. The developed heuristic approach
shows the best run time, and delivers near-optimal solutions in most cases.
|
3 |
Energy Efficient Resource Allocation for Phantom Cellular NetworksAbdelhady, Amr Mohamed Abdelaziz 04 1900 (has links)
Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number
of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a less severe way than increasing the number of pilots. It is found also that increasing phantom cells share increases the EE metric in the dense deployment case. Thus, it is always useful to allocate most of the network RUs to the phantom cells tier.
|
4 |
Coherent Distortion Risk Measures in Portfolio SelectionFeng, Ming Bin January 2011 (has links)
The theme of this thesis relates to solving the optimal portfolio selection problems using linear programming. There are two key contributions in this thesis. The first contribution is to generalize the well-known linear optimization framework of Conditional Value-at-Risk (CVaR)-based portfolio selection problems (see Rockafellar and Uryasev (2000, 2002)) to more general risk measure portfolio selection problems. In particular, the class of risk measure under consideration is called the Coherent Distortion Risk Measure (CDRM) and is the intersection of two well-known classes of risk measures in the literature: the Coherent Risk Measure (CRM) and the Distortion Risk Measure (DRM). In addition to CVaR, other risk measures which belong to CDRM include the Wang Transform (WT) measure, Proportional Hazard (PH) transform measure, and lookback (LB) distortion measure. Our generalization implies that the portfolio selection problems can be solved very efficiently using the linear programming approach and over a much wider class of risk measures.
The second contribution of the thesis is to establish the equivalences among four formulations of CDRM optimization problems: the return maximization subject to CDRM constraint, the CDRM minimization subject to return constraint, the return-CDRM utility maximization, the CDRM-based Sharpe Ratio maximization. Equivalences among these four formulations are established in a sense that they produce the same efficient frontier when varying the parameters in their corresponding problems. We point out that the first three formulations have already been investigated in Krokhmal et al. (2002) with milder assumptions on risk measures (convex functional of portfolio weights). Here we apply their results to CDRM and establish the fourth equivalence. For every one of these formulations, the relationship between its given parameter and the implied parameters for the other three formulations is explored. Such equivalences and relationships can help verifying consistencies (or inconsistencies) for risk management with different objectives and constraints. They are also helpful for uncovering the implied information of a decision making process or of a given investment market.
We conclude the thesis by conducting two case studies to illustrate the methodologies and implementations of our linear optimization approach, to verify the equivalences among four different problem formulations, and to investigate the properties of different members of CDRM. In addition, the efficiency (or inefficiency) of the so-called 1/n portfolio strategy in terms of the trade off between portfolio return and portfolio CDRM. The properties of optimal portfolios and their returns with respect to different CDRM minimization problems are compared through their numerical results.
|
5 |
Coherent Distortion Risk Measures in Portfolio SelectionFeng, Ming Bin January 2011 (has links)
The theme of this thesis relates to solving the optimal portfolio selection problems using linear programming. There are two key contributions in this thesis. The first contribution is to generalize the well-known linear optimization framework of Conditional Value-at-Risk (CVaR)-based portfolio selection problems (see Rockafellar and Uryasev (2000, 2002)) to more general risk measure portfolio selection problems. In particular, the class of risk measure under consideration is called the Coherent Distortion Risk Measure (CDRM) and is the intersection of two well-known classes of risk measures in the literature: the Coherent Risk Measure (CRM) and the Distortion Risk Measure (DRM). In addition to CVaR, other risk measures which belong to CDRM include the Wang Transform (WT) measure, Proportional Hazard (PH) transform measure, and lookback (LB) distortion measure. Our generalization implies that the portfolio selection problems can be solved very efficiently using the linear programming approach and over a much wider class of risk measures.
The second contribution of the thesis is to establish the equivalences among four formulations of CDRM optimization problems: the return maximization subject to CDRM constraint, the CDRM minimization subject to return constraint, the return-CDRM utility maximization, the CDRM-based Sharpe Ratio maximization. Equivalences among these four formulations are established in a sense that they produce the same efficient frontier when varying the parameters in their corresponding problems. We point out that the first three formulations have already been investigated in Krokhmal et al. (2002) with milder assumptions on risk measures (convex functional of portfolio weights). Here we apply their results to CDRM and establish the fourth equivalence. For every one of these formulations, the relationship between its given parameter and the implied parameters for the other three formulations is explored. Such equivalences and relationships can help verifying consistencies (or inconsistencies) for risk management with different objectives and constraints. They are also helpful for uncovering the implied information of a decision making process or of a given investment market.
We conclude the thesis by conducting two case studies to illustrate the methodologies and implementations of our linear optimization approach, to verify the equivalences among four different problem formulations, and to investigate the properties of different members of CDRM. In addition, the efficiency (or inefficiency) of the so-called 1/n portfolio strategy in terms of the trade off between portfolio return and portfolio CDRM. The properties of optimal portfolios and their returns with respect to different CDRM minimization problems are compared through their numerical results.
|
6 |
Towards More Intuitive Frameworks For The Project Portfolio Selection ProblemJanuary 2018 (has links)
abstract: Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of portfolios on many different criteria and allows decision makers (DM) to bring their experience and insight to the table when making a decision is discussed. A binary fractional integer program provides additional choices by optimizing portfolios on cost-benefit ratios over multiple time periods is also presented. By combining this framework with an `elimination by aspects' model of decision making, DMs evaluate portfolios on various objectives and ensure the selection of a portfolio most in line with their goals. By presenting a modeling framework to easily model a large number of project inter-dependencies and an evolutionary algorithm that is intelligently guided in the search for attractive portfolios by a beam search heuristic, practitioners are given a ready recipe to solve big problem instances to generate attractive project portfolios for their organizations. Finally, this dissertation attempts to address the problem of risk and uncertainty in project portfolio selection. After exploring the selection of portfolios based on trade-offs between a primary benefit and a primary cost, the third important dimension of uncertainty of outcome and the risk a decision maker is willing to take on in their quest to select the best portfolio for their organization is examined. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2018
|
7 |
An Optimization-Based Treatment Planner for Gamma Knife RadiosurgeryJitprapaikulsarn, Suradet 04 March 2005 (has links)
No description available.
|
8 |
Duality and optimality in multiobjective optimizationBot, Radu Ioan 04 July 2003 (has links) (PDF)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three
different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify,
under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals.
By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional
programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown.
We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some
inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical.
A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her.
Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen.
Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch.
Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
|
9 |
Farkas - type results for convex and non - convex inequality systemsHodrea, Ioan Bogdan 22 January 2008 (has links) (PDF)
As the title already suggests the aim of the present work is to present Farkas -
type results for inequality systems involving convex and/or non - convex functions.
To be able to give the desired results, we treat optimization problems which involve
convex and composed convex functions or non - convex functions like DC functions
or fractions.
To be able to use the fruitful Fenchel - Lagrange duality approach, to the primal
problem we attach an equivalent problem which is a convex optimization problem.
After giving a dual problem to the problem we initially treat, we provide weak
necessary conditions which secure strong duality, i.e., the case when the optimal
objective value of the primal problem coincides with the optimal objective value of
the dual problem and, moreover, the dual problem has an optimal solution.
Further, two ideas are followed. Firstly, using the weak and strong duality
between the primal problem and the dual problem, we are able to give necessary
and sufficient optimality conditions for the optimal solutions of the primal problem.
Secondly, provided that no duality gap lies between the primal problem and its
Fenchel - Lagrange - type dual we are able to demonstrate some Farkas - type
results and thus to underline once more the connections between the theorems of
the alternative and the theory of duality. One statement of the above mentioned
Farkas - type results is characterized using only epigraphs of functions.
We conclude our investigations by providing necessary and sufficient optimality
conditions for a multiobjective programming problem involving composed convex
functions. Using the well-known linear scalarization to the primal multiobjective
program a family of scalar optimization problems is attached. Further to each of
these scalar problems the Fenchel - Lagrange dual problem is determined. Making
use of the weak and strong duality between the scalarized problem and its dual the
desired optimality conditions are proved. Moreover, the way the dual problem of
the scalarized problem looks like gives us an idea about how to construct a vector
dual problem to the initial one. Further weak and strong vector duality assertions
are provided.
|
10 |
Duality and optimality in multiobjective optimizationBot, Radu Ioan 25 June 2003 (has links)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three
different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify,
under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals.
By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional
programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown.
We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some
inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical.
A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her.
Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen.
Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch.
Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
|
Page generated in 0.155 seconds