241 |
Interpretation of the Frozen Soils Behavior Extending the Mechanics of Unsaturated SoilsRen, Junping 28 August 2019 (has links)
Soil is the most widely used material in the construction of various civil infrastructure. Various types of soils are extensively used in its natural or compacted form in the construction of dams, canals, road and railway subgrades, and waste containment structures such as soil covers and liners. These infrastructure and foundation soils are exposed to the influence of environmental factors. In the permafrost and seasonally frozen regions, soils can be in different states (e.g., saturated or unsaturated, frozen or thawed, or combinations of them) due to the variations in moisture content and temperature. The soil-water characteristic curve (SWCC), which is the relationship between soil water content and suction, is used in the interpretation and prediction of unsaturated soils behavior. Similarly, the soil-freezing characteristic curve (SFCC), which is the relationship between unfrozen water content and subzero temperature, is used in the prediction and interpretation of frozen soils behavior. In this thesis, the SWCC and SFCC of two Canadian soils (i.e. Toronto silty clay (TSC) and Toronto lean clay (TLC)) were extensively investigated for better understanding the fundamental relationship between SWCC and SFCC.
The soil resilient modulus (MR) is a key material property used in the rational design of pavements. Experimental investigations were undertaken to determine the MR of five Canadian soils (i.e., TSC, TLC, Kincardine lean clay (KLC), Ottawa Leda clay (OLC), and Indian Head till (IHT)), considering the influence of moisture and temperature, with the aid of an advanced triaxial testing equipment. Two simple models were proposed for estimating the MR of frozen soils, in this thesis. In addition, an artificial neural network (ANN) model was developed for estimating the MR of the five Canadian soils considering various influencing factors.
The conclusions from the various studies in this thesis are succinctly summarized below.
(1) Four expressions (i.e. power relationship, exponential relationship, van Genuchten equation, and Fredlund and Xing equation) that are widely used for representing the SFCC were selected for providing comparisons between the measured and fitted SFCCs for different soils. The results suggest that the exponential relationship and van Genuchten equation are suitable for sandy soils. The power relationship reasonably fits the SFCC for soils with different particle sizes, but not for saline silts. The Fredlund and Xing equation is flexible and provides good fits for all the soils.
(2) The SFCC and SWCC of TSC and TLC were experimentally determined, analyzed, and compared. Many factors influence the reliable measurement of SFCC, which include sensors’ resolution and stability, sensor calibration for each soil, and thermodynamic equilibrium condition. The hysteresis of SFCC for the two soils is mainly attributed to the supercooling of pore water. The quantitative dissimilarity in the measured SFCC and SWCC may be attributed to specimen structure variations during compaction and saturation, and during freezing / thawing processes, and cracks formation due to sensors insertion. In addition, some fundamental differences may exist between the drying / wetting and freezing / thawing processes, resulting in dissimilarity.
(3) Two novel models were proposed for the estimation of MR of frozen soils. The semi-empirical model extends the mechanics of unsaturated soils and employs SFCC for prediction. Several coarse- and fine-grained saturated soils were used to validate this model. The empirical hyperbolic model was proposed considering that the frozen MR versus subzero temperature relationship resembles hyperbola. This model was validated on coarse- and fine-grained soils under saturated / unsaturated conditions. The hyperbolic model has wider application since it can be used for both saturated and unsaturated frozen soils. Both the models are simple and promising.
(4) The MR of five Canadian soils subjected to wetting and freezing was determined by using the GDS ELDyn triaxial testing system. A freezing system was established for controlling the desired testing temperatures within the soil specimens. The results suggest: (i) The effect of subzero temperature on the MR is significant. (ii) For TLC, KLC, OLC, and IHT, the frozen MR versus subzero temperature relationship of the saturated specimen typically has steeper slope than specimen at the optimum water content, for the temperature range from 0 to -5 °C. (iii) The effect of stress levels on the frozen MR depends on soil type, water content, and subzero temperature. Lastly, (iv) Loading frequency does not show a significant influence on the frozen MR.
(5) The MR of the five Canadian soils was determined considering wetting and freeze-thaw (F-T) conditions. The results suggest: (i) The F-T cycles result in weak soil structure due to reduction in suction, particles movement, loss of cohesion, and formation of cracks / channels. (ii) The critical numbers of F-T cycles were determined as 1, 1, 2, and 1 for TLC, KLC, OLC, and IHT at the optimum water content, respectively. (iii) The percentage of reduction in MR after the critical number of F-T cycles was strongly related to the plasticity index for specimens tested at the optimum water content. (iv) The wetting process results in the decrease in suction and enlargement of soil pores. Consequently, relatively low MR values were measured at high water contents, and the effect of F-T cycles becomes insignificant. Finally, (v) The effect of stress levels on the MR was dependent on the initial water content of the specimen and soil type.
|
242 |
Influence of Stress Treatments on the Resistance of <em>Lactococcus lactis</em> to Freezing and Freeze-DryingLin, Chan 01 May 1998 (has links)
This study investigated the effect of cold, heat, or osmotic shock treatment on the resistance of L. lactis subsp. cremoris MM160 and MM310 and Lactococcus lactis subsp. lactis MM210 and FG2 cheese starter bacteria to freezing and freeze-drying. The ability to withstand freezing at -60°C for 24 h was variable among lactococci, but resistance to this treatment was significantly improved (P < 0.05) in most strains by a 2-h cold shock at l0°C or a 25-min heat shock at 39°C (L. lactis subsp. cremoris) or 42°C (L. lactis subsp. lactis). Stress treatments that improved lactococcal freeze resistance were also found to significantly (P < 0.05) enhance the resistance of most strains to lyophilization. Increased resistance to freezing or lyophilization was not detected when stress treatments were performed in broth that contained erythromycin, which indicated stress-inducible proteins were involved in cell protection. Membrane fatty acid analysis of stress-treated cells suggested that enhanced resistance to freezing and lyophilization may be related to heat or cold shock-induced changes in cell membrane composition. Heat-shocked cells had a higher 19:0 cyclopropane fatty acid content than did control cells, and cold-shocked cells contained a lower ratio of saturated to unsaturated fatty acids. Other factors must also be involved in cell protection, however, because similar changes in membrane composition were also detected in strains whose resistance to freezing and lyophilization was not improved by heat or cold shock.
|
243 |
Mitochondrial Activity of Hardened and Nonhardened Rye (Secale Cereale) Plants Exposed to Freezing TemperaturesBennett, Bryce D. 01 May 1973 (has links)
Five day old dark-grown seedlings of Secale cereale variety "coup;ar" p:rown at 20 C were subjected to hardening at 2 C "!.n daily increments from 0 to 7 days, to temperature stress at -5 C for 0, 1, and 3 days, and to recovery at 20 C for 0, I, and J days. Unhardened plants were killed by temperature stress but as the time of hardening increased fewer plants were killed. After 5 days of hardening all plants survived subsequent freezing stress. Mitochondria were isolated from the plants after they received various combinations of the three temperature treatments. There were 8 hardening levels, 3 stress levels, and 3 recovery levels giving a total of 8x3x30 72 treatments. Mitochondria from unstressed plants exhibited steady ADPIO ratios, RC ratios, and rate of state 3 respiration over the whole range of hardening and recovery times. Mitochondria from stressed plants were totally inactive with 0 or one day of hardening but as the time of hardening increased so did ADP: O ratio, R~ ratio, and ratp of state J respiratIon. After 5 days of hardenjng mitochondrla from hardened then stressed plants reached a maxImum level of activity. Evidently there was some change 1n the mttochondria during the hardening phase.
|
244 |
Studies on the structural modification of protein aggregate induced by freezing process / 凍結プロセスにより誘起されるタンパク質凝集体の構造変化に関する研究Fang, Bowen 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23520号 / 農博第2467号 / 新制||農||1086(附属図書館) / 学位論文||R3||N5351(農学部図書室) / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 谷 史人, 教授 保川 清, 准教授 中川 究也 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
245 |
Long-Term Durability of Ordinary Portland Cement and Polypropylene Fiber Stabilized SoilARYAL, SUMAN 01 August 2019 (has links)
Soft soil stabilization frequently uses cement, lime, fly ash, etc., but very limited studies were conducted on the long-term durability of stabilized soil. The present research work deals with the long-term durability of commercially available soil (i.e., EPK clay) stabilized with ordinary Portland cement and polypropylene fiber using a realistic approach, where the effect can be noticed in each weathering cycle. In the present study, two different tests (i.e., wetting-drying and freezing-thawing) were conducted to analyze the long-term durability of stabilized soil. Cycles of higher temperature followed by rainfall, which generally occurs in southern states of the US, were analyzed by the wetting-drying test; and on the other hand, cycles of freezing temperature followed by normal temperature, which generally occurs in northern states of the US and Canada, were analyzed by the freezing-thawing test. For the mid-continental region where freezing, normal, and higher temperature followed by rainfall are expected to occur, hence both the test method i.e., wetting-drying and freezing-thawing, were suggested. Laboratory experimental investigations were conducted to find the percentage loss of stabilized soil during wetting-drying and freezing-thawing tests, which were used as a durability indicator for cement and cement-fiber stabilized soil. Stabilized samples were subjected to harsh environmental conditions in a laboratory set up, and their deterioration was observed and studied after each wetting-drying and freezing-thawing cycle. In the real world, stabilized soil encounters seasonal cycles of monsoon and summer in long run of its service life which was simulated in rapid weathering cycles in laboratory setup. EPK clay samples were stabilized with different percentages of cement, and a mix of cement-fiber combination and were subjected to 12 cycles of wetting-drying and freezing-thawing cycles separately to determine the percentage loss of soil in accordance with the ASTM standards. Finally, based on percentage loss of soil of those stabilized samples which survived up to 12 cycles of weathering action, the optimum content of stabilizing agent was determined for wetting-drying and freezing-thawing tests. Results of wetting-drying tests indicate that EPK clay stabilized with ordinary Portland cement and fiber combination survived up to 12 cycles, but only 10% cement + 0.5% fiber was durable against wetting-drying based on percentage loss. For all the samples stabilized with 10% cement + 0.5% fiber combination, the percentage loss of soil when subjected to durability test was less than 7%, which satisfy the Portland Cement Association’s (PCAs) durability specification. The results of freezing-thawing tests indicate that the EPK clay stabilized with 10% cement, 5% cement + 0.5% fiber, and 10% cement + 0.5% fiber survived up to 12 cycles and were durable against freezing-thawing based on percentage loss of soil i.e., less than 7% which satisfy the Portland Cement Association’s durability specification.
|
246 |
Effects of climate change across seasons on litterfall mass and chemistry in a northern hardwood forestBerry, Melissa 08 March 2021 (has links)
Northern hardwood forests are expected to experience an increase in mean annual air temperatures, and a decrease in winter snowpack and greater frequency of soil freeze/thaw cycles (FTCs) by the end of the century. As a result of these anticipated changes, northern hardwood forests in the northeastern U.S. will also have warmer soil temperatures in the growing season and colder soils in winter. Prior studies show that warmer soils in the growing season increase net primary productivity (NPP) and C storage as a result of increased soil net N mineralization, while increases in soil freezing in winter reduces plant uptake of N and C as a result of root damage. However, the combined effects of warmer soils in the growing season and increased soil freeze/thaw cycles in winter on tree litter mass and chemistry are unknown. We report here results from the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in New Hampshire, USA to characterize the response of leaf litter mass and chemistry to growing season warming combined with soil freeze–thaw cycles in winter. Across the years 2014-2017, litterfall mass and chemistry (%C, %N, C:N) were not significantly affected by changes in soil temperature; however, there was a trend of higher total litterfall mass and litter N mass from plots where soils were warmed in the growing season, but this increase disappeared with the addition of FTCs in winter. These results indicate that while rates of NPP and the total mass of N could be increased with rising soil temperatures over the next century in northern hardwood forests, the combination of warmer soils in the growing season and colder soils in winter may ultimate have little to no impact on litter mass or chemistry. We conclude that considering the combined effects of climate changes in the growing season and in winter is vital for the accurate determination of the response of litterfall mass and chemistry in northern hardwood forests.
|
247 |
A Study of Dew Harvesting and Freezing Performance of Non-Wetting SurfacesFuller, Alexander Michael 12 July 2023 (has links)
Non-wetting surfaces offer enhanced capabilities over bare metal substrates for condensation with or without phase change. This trait can be utilized to broaden strategies in combating water scarcity in water stressed areas. Slippery lubricant infused surfaces have the ability to shed water droplets with lower nucleation times, taking advantage of more of the limited amount of time available to collect dew and fog than traditional surfaces. However, existing studies focus on short durations with scant information available on the longer-term performance or durability of the materials in application environments. To address this knowledge gap, dew harvesting studies were conducted over a 96 hour period on a lubricant infused surface vis-à-vis regular surface of the same material. Three phases of performance are identified and discussed with regard to the water harvesting potential. The second part of the thesis addresses water condensation under conditions where freezing is a potential issue. Non-wetting surfaces have been shown to be a promising method of limiting the formation of ice from sessile droplets. This study explores the effect of surface roughness on the freeze time of sessile water droplets. Superhydrophobic and hydrophobic, lubricant infused, copper surfaces were created via electrodeposition and chemical etching in conjunction with chemical treatments to achieve non-wetting surfaces of varying surface textures. Freezing characteristics on the surfaces are studied experimentally and, for the first time, computationally, wherein the surface is described using a fractal surface topography. The effect of surface engineering on the freezing dynamics and comparison between the experimental and the computational studies are elucidated. / Master of Science / The use of durable, water repelling surfaces that are also thermally conductive provide an opportunity to help alleviate strain from a growing world crisis, water scarcity. Lubricant infused surfaces shed water from their surface by providing a slippery layer for the droplets to slide on, as opposed to bare metal which water tends to cling to. This behavior makes lubricant infused surfaces attractive as a water harvesting method. However, these surfaces degrade over time and must be maintained to perform at their maximum capability, collecting water for 40 minutes more than a bare surface. This thesis focuses on the performance of these surfaces over a 96-hour operating period to characterize the effect lubricant drainage has on the water collection behavior.
Freezing water droplets, commonly referred to as icing, poses concerns for safety and operational ability in industries like renewable energy generation, where icing limits efficiency. Non-wetting surfaces have a unique ability to inherently slow down the phase change of a water droplet to ice due to the lower contact area of droplets resting on the surface. This thesis examines superhydrophobic and lubricant infused surfaces of varying degrees of roughness to explore the effect that the contact angle and different surface structures have on the freezing rate of water on the surface. The experimental results are compared to numerical simulations, which is useful in designing systems that would implement this passive icing mitigation technique.
|
248 |
New Insight into the Physical, Catalytic and Recognition Properties of Cucurbituril MacrocyclesLu, Xiaoyong 25 September 2013 (has links)
No description available.
|
249 |
Adolescent Alcohol Exposure Results in Sex-specific Alterations in Conditioned Fear Learning and Memory in AdulthoodChandler, L. J., Vaughan, Dylan T., Gass, Justin T. 01 January 2022 (has links)
The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.
|
250 |
Reduction of Fat Content in Processed Meats Using Hot-Boning and Cold-Batter Mincing TechnologyWonderly, Morgan P 01 June 2020 (has links) (PDF)
Processed meats have received negative publicity due to high fat contents that have been linked to adverse effects on human health. Fat is an essential ingredient in many processed meat products, so reducing this all while maintaining the desired characteristics of the product is a challenge. The purpose of this study was to generate low-fat meat products using a combination of hot-boning/crust-freeze-air-chilling (HB-CFAC) and cold-batter mincing (CBM) technologies. Pork hams were subjected to HB-CFAC or chill-boning/crust-freeze-air-chilling (CB-CFAC) prior to 3 min pre-mincing and 6 min mincing for control gels with back-fat addition or low-fat gels with water addition instead of the reduced back-fat. Raw meat quality, protein functionality and textural properties were analyzed through various analyses. The pH values of HB muscle and cooked gels were significantly higher than those of CB muscle and cooked gels. The fat and moisture contents of control gels was higher and lower, respectively, than those of low-fat gels, regardless of HB or CB. The protein functionality and gel forming ability of HB muscle were superior to those of the CB muscle, regardless of fat content. These results indicate that fat can be reduced with no loss of textural quality because cold-batter mincing of the HB-CFAC muscle resulted in higher gel forming ability than that of CB-CFAC muscle.
|
Page generated in 0.0663 seconds