• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 11
  • 6
  • Tagged with
  • 49
  • 29
  • 27
  • 14
  • 14
  • 14
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo do processo de divisão em Bacillus subtilis por microscopia de fluorescência vital / Study of cell division in Bacillus subtilis by fluorescence microscopy

Meira, Guilherme Louzada Silva 23 June 2010 (has links)
A divisão celular em B. subtilis inicia-se pela formação de um complexo multiprotéico, o divisomo, no sítio onde a bactéria irá se dividir. FtsZ é a primeira proteína a se localizar no futuro sitio de divisão, formando uma estrutura em anel (anel Z) que se estende por toda a circunferência da célula. O anel Z funciona como um arcabouço responsável por recrutar outras quinze proteínas de divisão que irão participar da montagem do divisomo. Nesta tese, utilizamos abordagens quantitativas e qualitativas de microscopia de fluorescência vital para estudarmos duas questões ainda não esclarecidas sobre o funcionamento do divisomo. A primeira delas é como o divisomo é montado. Para estudarmos a montagem do divisomo nós realizamos ensaios de co-localização entre o anel Z (FtsZ-mCherry) e as proteínas ZapA, EzrA, FtsW, FtsL, YpsB , DivIVA, e MinC fusionadas a GFP. Quanto maior a freqüência de co-localização entre FtsZ e outra proteína de divisão, mais inicial é a participação da proteína na formação do divisomo. Portanto, a medida da freqüência de co-localização entre o anel Z e as proteínas componentes do divisomo permite que se deduza uma cinética da montagem deste complexo. Estes ensaios demonstraram uma freqüência de co-localização de 97,33% para ZapA; 98,31% para EzrA; 83,90% para FtsW; 78,43% para FtsL; 50% para YpsB; 41,7% para DivIVA e 31,64% para MinC. Estes resultados sugerem que o divisomo seja formado em três etapas. ZapA e EzrA se associam ao divisomo imediatamente após a formação do anel Z, em seguida FtsW e FtsL são recrutados para o divisomo, e por último YpsB, DivIVA, MinC associam-se ao divisomo. A segunda questão que investigamos nesta tese foi o mecanismo da mudança de posição do divisomo que ocorre durante a esporulação em B. subtilis. Na fase de esporulação a célula divide-se assimetricamente, com a formação do septo próxima a um dos pólos. Durante o crescimento vegetativo a divisão não ocorre próxima aos pólos por causa da ação das proteínas MinC, MinD e DivIVA, importantes reguladores espaciais da divisão. MinCD e DivIVA são inibidores da formação do anel Z que durante o crescimento vegetativo se localizam nos pólos das células.. Uma hipótese para explicar o uso dos sítios polares para a divisão durante a esporulação seria que as proteínas MinCD e DivIVA seriam removidas dos pólos celulares. Para testarmos esta hipótese, estudamos a localização das proteínas MinCD e DivIVA durante a esporulação. Nossos resultados demonstraram que MinCD e DivIVA se re-localizam e saem dos pólos celulares durante a esporulação. Porém esta dinâmica ocorre após a formação do anel Z assimétrico, sugerindo que o anel Z seja insensível a estes inibidores durante a esporulação. Por ensaios genéticos em B. subtilis demonstramos que a proteína SpoIIE, conhecida como provável proteína responsável por promover a formação do septo assimétrico, seja capaz de contrapor a ação de MinC no início da esporulação. Dessa maneira nós propomos um novo modelo de mudança da divisão simétrica para assimétrica durante a esporulação, diferentemente da simples saída do complexo MinCD dos pólos como é proposto na literatura. / Bacillus subtilis division begins through the formation of a multiprotein complex, the divisome, at the site of division. FtsZ is the earliest known protein to localize to the future division site where the protein forms a ring-like structure (Z-ring) that extends around the circumference of the cell. The Z-ring functions as a scaffold and recruits about fifteen other division proteins that compose the divisome. In this work, we used quantitative and qualitative methods of vital fluorescence microscopy to study two questions that have not been elucidated about the divisome dynamics. The first is how divisome is assembled. To address that problem, we made co-localization between Z-ring (FtsZ-mCherry) and proteins ZapA, EzrA, FtsW, FtsL, YpsB, DivIVA, and MinC fused to GFP. Higher is the match between GFP fusions to Z-ring, earlier is the assembly of division proteins to divisome. Therefore, the co-localization frequency between Z ring and divisome proteins will allow us to deduce the assemble kinetics of the divisome. This assays showed a co-localization frequency of 97,33% for ZapA; 98,31% for EzrA; 83,90 for FtsW; 78,43% for FtsL; 50% for YpsB; 41,7% for DivIVA and 31,64% for MinC. This data suggests that the divisome does not assemble in two but in three steps. ZapA and EzrA assemble into the divisome immediately after Z ring formation, secondly FtsW and FtsL were recruited to the divisome, and finally YpsB, DivIVA, MinC associated with the divisome. The second question that we investigated in this work is the mechanism responsible for change the divisome position that occurs during sporulation in B. subtilis. In sporulation the cell divides asymmetrically, with a septum formation near poles. During vegetative grown the divisiome does not occur near poles because of MinC, MinD and DivIVA action, relevant for spatial regulation of division. MinCD and DivIVA are inhibitors of Z ring formation that during vegetative growth are located at poles. A hypothesis to explain the use of polar sites for division during sporulation would be that MinCD and DivIVA would be removed from cellular poles. To test this hypothesis, we studied the location of MinCD and DivIVA proteins during sporulation. Our results demonstrated that MinCD and DivIVA re-localize and leave to cell poles during sporulation. However this process occurs after asymmetric Z ring formation, suggesting that Z ring would be unresponsive to this inhibitors during sporulation. Through genetics assays in B. subtilis we demonstrated that SpoIIE protein, known to probably play a role in asymmetric septum formation, would be able to contrapose MinC action during early sporulation. Therefore, we propose a novel model for change the symmetric to asymmetric division during sporulation, unlike the release of MinCD from pole proposed in the literature.
22

Estudo genético da interação entre as proteínas FtsZ e SpoIIE em Bacillus subtilis / Genetic study of the interaction between the FstZ and SpoIIE proteins in Bacillus subtilis

Durvale, Maxwell de Castro 12 November 2013 (has links)
Um dos principais componentes envolvidos no processo de divisão celular bacteriana é FtsZ, uma proteína homóloga à tubulina eucariótica. FtsZ polimeriza no interior da célula formando um anel ao qual dá-se o nome de anel Z, responsável pelo recrutamento de diversas outras proteínas de divisão, formando o divisomo. Como meio de sobrevivência sob condições adversas, alguns procariotos, como B. subtilis, podem sofrer um tipo de diferenciação celular que forma um organismo em estado latente, conhecido como esporo. A primeira etapa da formação do esporo é a mudança da posição do anel Z para mais próximo a um dos pólos da célula, produzindo duas células com tamanhos diferentes. SpoIIE é uma proteína fosfatase integral de membrana, que se localiza especificamente no septo assimétrico de uma célula em processo de esporulação. Além de um papel na ativação do fator de transcrição de esporulação σF, SpoIIE se liga a FtsZ e a auxilia na formação do septo assimétrico. Para definirmos a região de FtsZ responsável pela interação com SpoIIE, neste trabalho foram realizados ensaios de duplo-híbrido utilizando vetores com domínios de ativação e de ligação ao DNA do fator de transcrição GAL4 de levedura fusionados a diferentes porções de FtsZ, bem como a SpoIIE. Esses experimentos não forneceram informações sobre interação entre essas proteínas, já que através deles não foi possível reproduzir o resultado positivo descrito na literatura. Como alternativa ao duplo-hibrido para identificarmos o sítio de interação entre as duas proteínas, criamos uma triagem genética capaz de identificar mutantes de FtsZ que não interagem com SpoIIE, fazendo uso de uma biblioteca de mutantes de FtsZ já disponível no laboratório. Foi padronizada uma técnica de microscopia em larga escala em placas de 96 poços, que permitiu a triagem de mais de mil de mutantes de FtsZ, em busca de um em que SpoIIE-GFP induzido não localizasse no anel Z em célula vegetativa. Porém todos os mutantes triados ainda localizavam SpoIIE-GFP. Paralelamente, foi realizada uma triagem de supressão, utilizando como ponto de partida um mutante de SpoIIE que perdeu capacidade de interagir com FtsZ e buscando mutações em FtsZ que reestabelecessem a interação com SpoIIE mutante. Foram triados cerca de 35000 mutantes nesse ensaio, dentre os quais dezoito apresentaram o fenótipo esperado para um supressor. No entanto, todos os candidatos selecionados tratavam-se de falsos-positivos. O motivo que leva esses candidatos a apresentarem o fenótipo esperado sem reestabelecer a interação entre as duas proteínas ainda é desconhecido. A fim de confirmar se não haveria outras proteínas do divisomo responsáveis por intermediar a interação entre FtsZ e SpoIIE, foram feitos experimentos de co-localização de FtsZ e SpoIIE na ausência de DivIB e FtsA. Em ambos os casos SpoIIE ainda localiza no divisomo, descartando a possibilidade de que DivIB e FtsA sejam mediadores da interação FtsZ-SpoIIE. Por fim, foram realizados experimentos de co-localização de SpoIIE com mutantes de FtsZ previamente identificados em outros experimentos em nosso laboratório. Nesse experimento foi identificado que a expressão de SpoIIE-GFP induzida por IPTG é capaz de reestabelecer a frequência de divisão no mutante FtsZ-R376T, que normalmente é deficiente na formação de divisomos. Esse resultado reforça a idéia de que essas proteínas interagem diretamente, e sugere que SpoIIE é capaz de reestabelecer a atividade de FtsZ em um mutante que apresente falhas na polimerização. / One of the major components involved in bacterial cell division is FtsZ, a protein homologous to the eukaryotic tubulin. FtsZ polymerizes inside the cell forming a ring to which is given the name Z ring, wich is responsible for the recruitment of several other proteins division, forming the divisome. As a means of survival under adverse conditions, some prokaryotes such as B. subtilis may undergo a type of cell differentiation that results in an organism in a latent state, known as a spore. The first stage of the spore formation is to change the Z ring position closer to the poles of the cell, producing two cells of different sizes. SpoIIE is an integral membrane phosphatase protein, which is specifically located in the septum of an asymmetric cell in sporulation process. In addition to a role in the activation of the sporulation transcription factor σF, SpoIIE binds to FtsZ and assists in the formation of the asymmetric septum. To define the FtsZ region responsible for interaction with SpoIIE, in this work we performed tests using two-hybrid vectors with activation and DNA binding domains of the yeast transcription factor GAL4 fused to different portions of FtsZ and SpoIIE. These experiments did not provide information on the interaction between these proteins, since through them it was not possible to reproduce the positive results reported in the literature. As an alternative to the two-hybrid to identify the site of interaction between the two proteins, we created a genetic screening that can identify FtsZ mutants that cannot interact with SpoIIE, using a library of FtsZ mutants already available in the laboratory. We standardized a large scale microscopy using 96-well plates, allowing the screening of over a thousand mutants of FtsZ in search of a induced SpoIIE-GFP which would no longer localize at the vegetative cell Z ring. However, all the screened mutants still localized SpoIIE-GFP. In parallel, we performed a screening of suppression, using as a starting point a SpoIIE mutant that lost the ability to interact with FtsZ and searching for mutations in FtsZ that would reestablish interaction with the SpoIIE mutant. We screened approximately 35,000 mutants in this essay, eighteen of which showed the phenotype expected for a suppressor. However, all selected candidates were false positives. The reason why such candidates do show the expected phenotype without reestablishment of the interaction between the two proteins is still unknown. In order to confirm whether there would be other divisiome proteins responsible for mediating the interaction between FtsZ and SpoIIE, co-localization experiments were made using FtsZ and SpoIIE in the absence of DivIB and FtsA. In both cases SpoIIE still located in divisome, ruling out the possibility that DivIB and FtsA are essencial mediators of the SpoIIE-FtsZ interaction. Finally, co-localization experiments were carried out with SpoIIE and FtsZ mutants previously identified in other experiments in our laboratory. In this experiment it was identified that the expression of IPTG-induced SpoIIE-GFP is able to restore the division frequency in the FtsZ-R376T mutant, which normally is deficient in the formation of divisomes. This result reinforces the idea that these proteins interact directly, and suggests that SpoIIE is able to restore the activity of FtsZ in a mutant that presents defect in polymerization.
23

Caracterização da interação entre o regulador espacial MinC e seu alvo FtsZ em Bacillus subtilis / Characterization of interaction between the spatial regulator for bacterial division MinC and its target FtsZ in Bacillus subtilis

Blasios Junior, Valdir 14 August 2014 (has links)
A divisão celular bacteriana é orquestrada por FtsZ, uma proteína homóloga à tubulina eucariótica que possui a capacidade de polimerizar e gerar uma estrutura chamada de anel Z. O local onde esta estrutura citoesquelética contrátil é formada determina o futuro sítio de divisão. O complexo MinCD é um dos principais reguladores da posição da divisão, favorecendo a montagem do anel Z precisamente na região medial da bactéria. MinCD age como um inibidor sítio específico da polimerização de FtsZ, atuando preferencialmente nos polos celulares. MinC é a proteína do complexo que atua diretamente sobre FtsZ e inibe sua polimerização. Essa tese elucida a interação entre FtsZ e MinC e sugere o mecanismo exercido por MinC em Bacillus subtilis. Foi triada uma biblioteca de mutantes randômicos de FtsZ para identificação de mutantes resistentes à ação de MinC. Dentre estes, as substituições K243R e D287V, quando caracterizados usando espalhamento de luz e espectroscopia de fluorescência impediram a interação com MinC. Como as mutações estavam localizados em torno das hélices H-9 e H-10 no domínio C-terminal de FtsZ, concluímos que esta região representa o sítio de interação com MinC desta proteína. Como complemento ao mapeamento do sitio de ligação de MinC em FtsZ, identificamos a região de MinC que interage com FtsZ. Para tanto, escolhemos resíduos de MinC para mutagênese e caracterização. A escolha priorizou os resíduos conservados entre espécies Gram-positivas, experimentos de RMN, carga e exposição ao solvente dos mesmos. Dentre os resíduos de MinC mutados que afetaram sua capacidade de inibir a polimerização de FtsZ in vitro foram: Y8 e K12 (β-1), K15 (alça-2), H55 (β-3) , H84 (β-4) e K149 (C-terminal). Sendo assim, podemos concluir que a face de interação para FtsZ em MinC de B. subtilis é a única folha β do domínio N-terminal desta proteína. Com base nos sítios mapeados das duas proteínas experimentalmente, criamos um modelo in silico do complexo MinC-FtsZ por docking molecular. De acordo com o modelo gerado, MinC interage com a porção lateral de polímeros de FtsZ. Isto sugere que MinC atue na inibição da formação de feixes de filamentos de FtsZ, impedindo assim a formação de anéis Z funcionais. Esse mecanismo de ação do sistema Min é diferente do proposto para E. coli, no qual MinC interage com a face de polimerização FtsZ-FtsZ e impede a formação de protofilamentos de FtsZ. / Bacterial cell division is orchestrated by FtsZ, a protein homologous to eukaryotic tubulin that has the ability to polymerize and generate a cytoplasmic structure called the Z ring. The subcellular location where this cytoskeletal structure is formed determines the future division site. The MinCD complex is one of the main regulators of the position of cell division, driving the assembly of Z-ring precisely at the medial region of the cell. MinCD acts as a site-specific inhibitor of FtsZ polymerization, blocking Z ring formation at the cell poles. MinC is the protein of the complex that acts directly on FtsZ and inhibits its polymerization. This thesis elucidates the interaction between FtsZ and MinC and suggests the MinC mechanism in Bacillus subtilis. An ftsZ randomly mutagenized library was screened to identify mutants that are resistant to MinC action. Using right-angle light scattering and fluorescence spectroscopy we showed that substitutions K243R and D287V lost the interaction to MinC. These substituted residues clustered around the H-9 and H-10 helices in the C-terminal domain of FtsZ, thus, we conclude that this region is the binding site for MinC. In addition to mapping the MinC binding site on FtsZ, we also identified the FtsZ binding site in MinC. Based on residue conservation, NMR experiments and exposure to solvent, we chose residues of MinC for mutagenesis and characterization. The substituted residues that di srupted MinC ability to inhibit FtsZ polymerization in vitro were: Y8 and K12 (β-1), K15 (turn-2) , H55 (β-3), H84 (β-4) and K149 (C-terminal). Thus, we conclude that the binding site of MinC for FtsZ is located on the β only sheet at the N-terminal domain of MinC from B. subtilis. Finally, based on the binding sites of the two proteins mapped experimentally, we created a model of the complex between MinC and FtsZ by molecular docking. According to the generated model, MinC interacts with the lateral portion of FtsZ polymers. This indicates that MinC should inhibit assembly of higher order FtsZ polymers, thereby preventing the formation of a functional Z-ring. This mechanism of Min is different from that proposed in E. coli, in which MinC interacts with FtsZ polymerization interface and inhibits FtsZ protofilament formation.
24

Caracterização da interação entre o regulador espacial MinC e seu alvo FtsZ em Bacillus subtilis / Characterization of interaction between the spatial regulator for bacterial division MinC and its target FtsZ in Bacillus subtilis

Valdir Blasios Junior 14 August 2014 (has links)
A divisão celular bacteriana é orquestrada por FtsZ, uma proteína homóloga à tubulina eucariótica que possui a capacidade de polimerizar e gerar uma estrutura chamada de anel Z. O local onde esta estrutura citoesquelética contrátil é formada determina o futuro sítio de divisão. O complexo MinCD é um dos principais reguladores da posição da divisão, favorecendo a montagem do anel Z precisamente na região medial da bactéria. MinCD age como um inibidor sítio específico da polimerização de FtsZ, atuando preferencialmente nos polos celulares. MinC é a proteína do complexo que atua diretamente sobre FtsZ e inibe sua polimerização. Essa tese elucida a interação entre FtsZ e MinC e sugere o mecanismo exercido por MinC em Bacillus subtilis. Foi triada uma biblioteca de mutantes randômicos de FtsZ para identificação de mutantes resistentes à ação de MinC. Dentre estes, as substituições K243R e D287V, quando caracterizados usando espalhamento de luz e espectroscopia de fluorescência impediram a interação com MinC. Como as mutações estavam localizados em torno das hélices H-9 e H-10 no domínio C-terminal de FtsZ, concluímos que esta região representa o sítio de interação com MinC desta proteína. Como complemento ao mapeamento do sitio de ligação de MinC em FtsZ, identificamos a região de MinC que interage com FtsZ. Para tanto, escolhemos resíduos de MinC para mutagênese e caracterização. A escolha priorizou os resíduos conservados entre espécies Gram-positivas, experimentos de RMN, carga e exposição ao solvente dos mesmos. Dentre os resíduos de MinC mutados que afetaram sua capacidade de inibir a polimerização de FtsZ in vitro foram: Y8 e K12 (β-1), K15 (alça-2), H55 (β-3) , H84 (β-4) e K149 (C-terminal). Sendo assim, podemos concluir que a face de interação para FtsZ em MinC de B. subtilis é a única folha β do domínio N-terminal desta proteína. Com base nos sítios mapeados das duas proteínas experimentalmente, criamos um modelo in silico do complexo MinC-FtsZ por docking molecular. De acordo com o modelo gerado, MinC interage com a porção lateral de polímeros de FtsZ. Isto sugere que MinC atue na inibição da formação de feixes de filamentos de FtsZ, impedindo assim a formação de anéis Z funcionais. Esse mecanismo de ação do sistema Min é diferente do proposto para E. coli, no qual MinC interage com a face de polimerização FtsZ-FtsZ e impede a formação de protofilamentos de FtsZ. / Bacterial cell division is orchestrated by FtsZ, a protein homologous to eukaryotic tubulin that has the ability to polymerize and generate a cytoplasmic structure called the Z ring. The subcellular location where this cytoskeletal structure is formed determines the future division site. The MinCD complex is one of the main regulators of the position of cell division, driving the assembly of Z-ring precisely at the medial region of the cell. MinCD acts as a site-specific inhibitor of FtsZ polymerization, blocking Z ring formation at the cell poles. MinC is the protein of the complex that acts directly on FtsZ and inhibits its polymerization. This thesis elucidates the interaction between FtsZ and MinC and suggests the MinC mechanism in Bacillus subtilis. An ftsZ randomly mutagenized library was screened to identify mutants that are resistant to MinC action. Using right-angle light scattering and fluorescence spectroscopy we showed that substitutions K243R and D287V lost the interaction to MinC. These substituted residues clustered around the H-9 and H-10 helices in the C-terminal domain of FtsZ, thus, we conclude that this region is the binding site for MinC. In addition to mapping the MinC binding site on FtsZ, we also identified the FtsZ binding site in MinC. Based on residue conservation, NMR experiments and exposure to solvent, we chose residues of MinC for mutagenesis and characterization. The substituted residues that di srupted MinC ability to inhibit FtsZ polymerization in vitro were: Y8 and K12 (β-1), K15 (turn-2) , H55 (β-3), H84 (β-4) and K149 (C-terminal). Thus, we conclude that the binding site of MinC for FtsZ is located on the β only sheet at the N-terminal domain of MinC from B. subtilis. Finally, based on the binding sites of the two proteins mapped experimentally, we created a model of the complex between MinC and FtsZ by molecular docking. According to the generated model, MinC interacts with the lateral portion of FtsZ polymers. This indicates that MinC should inhibit assembly of higher order FtsZ polymers, thereby preventing the formation of a functional Z-ring. This mechanism of Min is different from that proposed in E. coli, in which MinC interacts with FtsZ polymerization interface and inhibits FtsZ protofilament formation.
25

Estudo genético da interação entre as proteínas FtsZ e SpoIIE em Bacillus subtilis / Genetic study of the interaction between the FstZ and SpoIIE proteins in Bacillus subtilis

Maxwell de Castro Durvale 12 November 2013 (has links)
Um dos principais componentes envolvidos no processo de divisão celular bacteriana é FtsZ, uma proteína homóloga à tubulina eucariótica. FtsZ polimeriza no interior da célula formando um anel ao qual dá-se o nome de anel Z, responsável pelo recrutamento de diversas outras proteínas de divisão, formando o divisomo. Como meio de sobrevivência sob condições adversas, alguns procariotos, como B. subtilis, podem sofrer um tipo de diferenciação celular que forma um organismo em estado latente, conhecido como esporo. A primeira etapa da formação do esporo é a mudança da posição do anel Z para mais próximo a um dos pólos da célula, produzindo duas células com tamanhos diferentes. SpoIIE é uma proteína fosfatase integral de membrana, que se localiza especificamente no septo assimétrico de uma célula em processo de esporulação. Além de um papel na ativação do fator de transcrição de esporulação σF, SpoIIE se liga a FtsZ e a auxilia na formação do septo assimétrico. Para definirmos a região de FtsZ responsável pela interação com SpoIIE, neste trabalho foram realizados ensaios de duplo-híbrido utilizando vetores com domínios de ativação e de ligação ao DNA do fator de transcrição GAL4 de levedura fusionados a diferentes porções de FtsZ, bem como a SpoIIE. Esses experimentos não forneceram informações sobre interação entre essas proteínas, já que através deles não foi possível reproduzir o resultado positivo descrito na literatura. Como alternativa ao duplo-hibrido para identificarmos o sítio de interação entre as duas proteínas, criamos uma triagem genética capaz de identificar mutantes de FtsZ que não interagem com SpoIIE, fazendo uso de uma biblioteca de mutantes de FtsZ já disponível no laboratório. Foi padronizada uma técnica de microscopia em larga escala em placas de 96 poços, que permitiu a triagem de mais de mil de mutantes de FtsZ, em busca de um em que SpoIIE-GFP induzido não localizasse no anel Z em célula vegetativa. Porém todos os mutantes triados ainda localizavam SpoIIE-GFP. Paralelamente, foi realizada uma triagem de supressão, utilizando como ponto de partida um mutante de SpoIIE que perdeu capacidade de interagir com FtsZ e buscando mutações em FtsZ que reestabelecessem a interação com SpoIIE mutante. Foram triados cerca de 35000 mutantes nesse ensaio, dentre os quais dezoito apresentaram o fenótipo esperado para um supressor. No entanto, todos os candidatos selecionados tratavam-se de falsos-positivos. O motivo que leva esses candidatos a apresentarem o fenótipo esperado sem reestabelecer a interação entre as duas proteínas ainda é desconhecido. A fim de confirmar se não haveria outras proteínas do divisomo responsáveis por intermediar a interação entre FtsZ e SpoIIE, foram feitos experimentos de co-localização de FtsZ e SpoIIE na ausência de DivIB e FtsA. Em ambos os casos SpoIIE ainda localiza no divisomo, descartando a possibilidade de que DivIB e FtsA sejam mediadores da interação FtsZ-SpoIIE. Por fim, foram realizados experimentos de co-localização de SpoIIE com mutantes de FtsZ previamente identificados em outros experimentos em nosso laboratório. Nesse experimento foi identificado que a expressão de SpoIIE-GFP induzida por IPTG é capaz de reestabelecer a frequência de divisão no mutante FtsZ-R376T, que normalmente é deficiente na formação de divisomos. Esse resultado reforça a idéia de que essas proteínas interagem diretamente, e sugere que SpoIIE é capaz de reestabelecer a atividade de FtsZ em um mutante que apresente falhas na polimerização. / One of the major components involved in bacterial cell division is FtsZ, a protein homologous to the eukaryotic tubulin. FtsZ polymerizes inside the cell forming a ring to which is given the name Z ring, wich is responsible for the recruitment of several other proteins division, forming the divisome. As a means of survival under adverse conditions, some prokaryotes such as B. subtilis may undergo a type of cell differentiation that results in an organism in a latent state, known as a spore. The first stage of the spore formation is to change the Z ring position closer to the poles of the cell, producing two cells of different sizes. SpoIIE is an integral membrane phosphatase protein, which is specifically located in the septum of an asymmetric cell in sporulation process. In addition to a role in the activation of the sporulation transcription factor σF, SpoIIE binds to FtsZ and assists in the formation of the asymmetric septum. To define the FtsZ region responsible for interaction with SpoIIE, in this work we performed tests using two-hybrid vectors with activation and DNA binding domains of the yeast transcription factor GAL4 fused to different portions of FtsZ and SpoIIE. These experiments did not provide information on the interaction between these proteins, since through them it was not possible to reproduce the positive results reported in the literature. As an alternative to the two-hybrid to identify the site of interaction between the two proteins, we created a genetic screening that can identify FtsZ mutants that cannot interact with SpoIIE, using a library of FtsZ mutants already available in the laboratory. We standardized a large scale microscopy using 96-well plates, allowing the screening of over a thousand mutants of FtsZ in search of a induced SpoIIE-GFP which would no longer localize at the vegetative cell Z ring. However, all the screened mutants still localized SpoIIE-GFP. In parallel, we performed a screening of suppression, using as a starting point a SpoIIE mutant that lost the ability to interact with FtsZ and searching for mutations in FtsZ that would reestablish interaction with the SpoIIE mutant. We screened approximately 35,000 mutants in this essay, eighteen of which showed the phenotype expected for a suppressor. However, all selected candidates were false positives. The reason why such candidates do show the expected phenotype without reestablishment of the interaction between the two proteins is still unknown. In order to confirm whether there would be other divisiome proteins responsible for mediating the interaction between FtsZ and SpoIIE, co-localization experiments were made using FtsZ and SpoIIE in the absence of DivIB and FtsA. In both cases SpoIIE still located in divisome, ruling out the possibility that DivIB and FtsA are essencial mediators of the SpoIIE-FtsZ interaction. Finally, co-localization experiments were carried out with SpoIIE and FtsZ mutants previously identified in other experiments in our laboratory. In this experiment it was identified that the expression of IPTG-induced SpoIIE-GFP is able to restore the division frequency in the FtsZ-R376T mutant, which normally is deficient in the formation of divisomes. This result reinforces the idea that these proteins interact directly, and suggests that SpoIIE is able to restore the activity of FtsZ in a mutant that presents defect in polymerization.
26

Estudo do processo de divisão em Bacillus subtilis por microscopia de fluorescência vital / Study of cell division in Bacillus subtilis by fluorescence microscopy

Guilherme Louzada Silva Meira 23 June 2010 (has links)
A divisão celular em B. subtilis inicia-se pela formação de um complexo multiprotéico, o divisomo, no sítio onde a bactéria irá se dividir. FtsZ é a primeira proteína a se localizar no futuro sitio de divisão, formando uma estrutura em anel (anel Z) que se estende por toda a circunferência da célula. O anel Z funciona como um arcabouço responsável por recrutar outras quinze proteínas de divisão que irão participar da montagem do divisomo. Nesta tese, utilizamos abordagens quantitativas e qualitativas de microscopia de fluorescência vital para estudarmos duas questões ainda não esclarecidas sobre o funcionamento do divisomo. A primeira delas é como o divisomo é montado. Para estudarmos a montagem do divisomo nós realizamos ensaios de co-localização entre o anel Z (FtsZ-mCherry) e as proteínas ZapA, EzrA, FtsW, FtsL, YpsB , DivIVA, e MinC fusionadas a GFP. Quanto maior a freqüência de co-localização entre FtsZ e outra proteína de divisão, mais inicial é a participação da proteína na formação do divisomo. Portanto, a medida da freqüência de co-localização entre o anel Z e as proteínas componentes do divisomo permite que se deduza uma cinética da montagem deste complexo. Estes ensaios demonstraram uma freqüência de co-localização de 97,33% para ZapA; 98,31% para EzrA; 83,90% para FtsW; 78,43% para FtsL; 50% para YpsB; 41,7% para DivIVA e 31,64% para MinC. Estes resultados sugerem que o divisomo seja formado em três etapas. ZapA e EzrA se associam ao divisomo imediatamente após a formação do anel Z, em seguida FtsW e FtsL são recrutados para o divisomo, e por último YpsB, DivIVA, MinC associam-se ao divisomo. A segunda questão que investigamos nesta tese foi o mecanismo da mudança de posição do divisomo que ocorre durante a esporulação em B. subtilis. Na fase de esporulação a célula divide-se assimetricamente, com a formação do septo próxima a um dos pólos. Durante o crescimento vegetativo a divisão não ocorre próxima aos pólos por causa da ação das proteínas MinC, MinD e DivIVA, importantes reguladores espaciais da divisão. MinCD e DivIVA são inibidores da formação do anel Z que durante o crescimento vegetativo se localizam nos pólos das células.. Uma hipótese para explicar o uso dos sítios polares para a divisão durante a esporulação seria que as proteínas MinCD e DivIVA seriam removidas dos pólos celulares. Para testarmos esta hipótese, estudamos a localização das proteínas MinCD e DivIVA durante a esporulação. Nossos resultados demonstraram que MinCD e DivIVA se re-localizam e saem dos pólos celulares durante a esporulação. Porém esta dinâmica ocorre após a formação do anel Z assimétrico, sugerindo que o anel Z seja insensível a estes inibidores durante a esporulação. Por ensaios genéticos em B. subtilis demonstramos que a proteína SpoIIE, conhecida como provável proteína responsável por promover a formação do septo assimétrico, seja capaz de contrapor a ação de MinC no início da esporulação. Dessa maneira nós propomos um novo modelo de mudança da divisão simétrica para assimétrica durante a esporulação, diferentemente da simples saída do complexo MinCD dos pólos como é proposto na literatura. / Bacillus subtilis division begins through the formation of a multiprotein complex, the divisome, at the site of division. FtsZ is the earliest known protein to localize to the future division site where the protein forms a ring-like structure (Z-ring) that extends around the circumference of the cell. The Z-ring functions as a scaffold and recruits about fifteen other division proteins that compose the divisome. In this work, we used quantitative and qualitative methods of vital fluorescence microscopy to study two questions that have not been elucidated about the divisome dynamics. The first is how divisome is assembled. To address that problem, we made co-localization between Z-ring (FtsZ-mCherry) and proteins ZapA, EzrA, FtsW, FtsL, YpsB, DivIVA, and MinC fused to GFP. Higher is the match between GFP fusions to Z-ring, earlier is the assembly of division proteins to divisome. Therefore, the co-localization frequency between Z ring and divisome proteins will allow us to deduce the assemble kinetics of the divisome. This assays showed a co-localization frequency of 97,33% for ZapA; 98,31% for EzrA; 83,90 for FtsW; 78,43% for FtsL; 50% for YpsB; 41,7% for DivIVA and 31,64% for MinC. This data suggests that the divisome does not assemble in two but in three steps. ZapA and EzrA assemble into the divisome immediately after Z ring formation, secondly FtsW and FtsL were recruited to the divisome, and finally YpsB, DivIVA, MinC associated with the divisome. The second question that we investigated in this work is the mechanism responsible for change the divisome position that occurs during sporulation in B. subtilis. In sporulation the cell divides asymmetrically, with a septum formation near poles. During vegetative grown the divisiome does not occur near poles because of MinC, MinD and DivIVA action, relevant for spatial regulation of division. MinCD and DivIVA are inhibitors of Z ring formation that during vegetative growth are located at poles. A hypothesis to explain the use of polar sites for division during sporulation would be that MinCD and DivIVA would be removed from cellular poles. To test this hypothesis, we studied the location of MinCD and DivIVA proteins during sporulation. Our results demonstrated that MinCD and DivIVA re-localize and leave to cell poles during sporulation. However this process occurs after asymmetric Z ring formation, suggesting that Z ring would be unresponsive to this inhibitors during sporulation. Through genetics assays in B. subtilis we demonstrated that SpoIIE protein, known to probably play a role in asymmetric septum formation, would be able to contrapose MinC action during early sporulation. Therefore, we propose a novel model for change the symmetric to asymmetric division during sporulation, unlike the release of MinCD from pole proposed in the literature.
27

Regulation of the Principal Cell Division Protein FtsZ of Escherichia Coli by Antisense RNA and FtsH Protease

Anand, Deepak January 2014 (has links) (PDF)
The PhD thesis is on the studsy of the influence of the ftsZ antisense RNA and FtsH protease on the synthesis and function of the Escherichia coli cytokinetic protein, FtsZ, which mediates septation during cell division. Thus, it involves three molecules, FtsZ, ftsZ antisense RNA, and FtsH protease. While the E. coli ftsZ antisense RNA is being identified and structurally and functionally characterised for the first time, there has been some earlier studies in the laboratory in which the FtsH protease was found to have influence on the presence of the FtsZ rings at the mid-cell site. The Chapter 1 is the Introduction to the thesis presented in 3 parts –Part 1A, 1B, and 1C, introducing FtsZ and bacterial cell division, bacterial antisense RNAs, and FtsH protease, respectively. The Chapter 2 gives the description of the Materials and Methods used in the study. The Chapter 3 presents the identification, structural and functional characterisation of the ftsZ cis-antisense RNA, and its role in the regulation of FtsZ protein levels. Initially, the expression of cis-encoded antisense RNA from E. coli ftsZ loci was demonstrated during the different growth phases of the bacterium (RT-PCR/qPCR data). Antisense RNA is expressed from three promoters (primer extension and promoter probe data) on the complementary strand of the ftsZ coding region and terminates at the singletrand te complementary toftsAthegenethat 3’islocatedregionupstreamof theofftsZ the gene. Induced overexpression of a portion (423 bp) of the antisense RNA, spanning the ftsZ AUG codon and the ribosome binding site of ftsZ mRNA, from pBS(KS) could downregulate the synthesis of FtsZ protein to approximately 30%, leading to cell division arrest and filamentation of the cells at 42°C. This effect was less dramatic at 30ºC, probably due to less melting of the antisense RNA. Immunostaining performed on the induced culture did not show FtsZ ring formation after overnight induction whereas reduction in the proportion of the cells carrying FtsZ rings could be clearly observed after 2 hrs of induction. Real time PCR analysis performed for relative quantitation of ftsZ mRNA and ftsZas RNA from different growth phases (0.2 to 2.5 OD600 nm) showed growth phase dependent expression of the antisense RNA. While the levels of ftsZas RNA were found to be high at lower OD cultures or early growth phase cultures, the levels were found to be low at the late log phase and stationary phase cultures. Thus, when the cells are actively dividing and therefore need more FtsZ, the levels of the ftsZas RNA are high, while the cells are not actively dividing and therefore the FtsZ levels are low, the levels of the ftsZas RNA are low. At any phase of the growth, the ratio of the ftsZ mRNA to the ftsZas RNA was always found to be 6:1. Thus, the physiological role the ftsZas RNA is to maintain the availability of the ftsZ mRNA at a level that is commensurate with the requirement for the FtsZ protein during the different stages of the cell growth and division. The Chapter 4 is on the study of the possible mechanism behind the influence of FtsH protease on the presence of FtsZ rings at the mid-cell site during septation in cell division. Immunostaining for FtsZ in the mid-log phase E. coli cells showed that 82% of the AR3289 (ftsH wild type) cells possessed FtsZ rings, while only 18% of the AR3291 (ftsH-null maintained viable by a suppressor mutation) cells showed Z-rings. While the AR3289 cells showed a cell doubling time of 20 min, the AR3291 cells had a cell doubling time of 45 min. The mass doubling time of AR3289 and AR3291 were 24 min and 54 min, respectively. These distinct differences were found in spite of the suppressor mutation suppressing all the deleterious effects of the lack of the essential protease, FtsH. Complementation of the ftsH-null cells (AR3291) with the wild type FtsH but not with the ATP-binding or ATPase, or protease-defective mutants of FtsH, restored the FtsZ ring status to about 80% of the cells. The growth rate of AR3291 was also partly restored to comparable to that of the wild type cells upon complementation. Western blotting for FtsZ, and the FtsZ-stabilising proteins, FtsA and ZipA, showed that the ftsH-null cells have low levels of FtsA, as compared to those in the isogenic wild type cells (AR3289). The levels of FtsZ and ZipA were comparable in both the cells. Quantitative PCR performed for different cell division genes within the dcw cluster showed no sign of change in the ftsA transcript levels in the ftsH-null cells, suggesting that the low levels of FtsA in the ftsH-null cells were not due to transcriptional downregulation. Further experiments showed that the half-life of FtsA protein in the AR3289 cells was 45 min, while that in the AR3291 cells was 24 min. This experiment showed that the low levels of FtsA in the ftsH-null cells was due to the low half-life of FtsA in the cells. Growth synchronisation of the AR3289 and AR3291 cells showed that the levels of FtsA prior to cell division stage do not increase in the ftsH-null cells as much as in the isogenic wild type cells. Thus, the ftsH-null cells must be somehow managing the division through the partial stabilisation of FtsZ rings by ZipA. Interestingly, immunostaining for FtsH in AR3289 cells showed the presence of FtsH at the mid-cell site, as co-localised with FtsZ, for a brief period prior to cell constriction. These observations suggest the involvement of FtsH in cell division process. The faster degradation of FtsA in the absence of FtsH protease implies that another protein, which may be a protease that directly degrades FtsA or a chaperone that helps the unfolding of FtsA for degradation, might be the substrate of FtsH protease. The absence of FtsH protease brings up the levels of this unknown protein, which in turn facilitates (if it is a chaperone) degradation of or directly degrades (if it is a protease) FtsA. This model for the link among FtsH, FtsA levels, and the presence of FtsZ has been proposed based on the observations. Thus, the present study reveals for the first time an FtsA-linked role for FtsH protease in the presence of FtsZ ring at the mid-cell site and hence in bacterial septal biogenesis. The thesis is concluded with the list of salient findings, publications, and references.
28

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

Tavares, José Roberto 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.
29

Estudo genético da interação entre FtsZ e o modulador de divisão ZapA em Bacillus subtilis / Genetic Study of the interaction between FtsZ and the division modulator ZapA in Bacillus subtilis

Bisson Filho, Alexandre Wilson 01 April 2009 (has links)
A citocinese bacteriana é controlada por diversas proteínas que se agrupam em um complexo chamado divisomo. O cerne do divisomo é constituído por FtsZ, uma proteína homóloga à tubulina eucariótica, que se auto-associa formando uma estrutura chamada anel Z. O anel Z serve como arcabouço e recruta diversas outras proteínas componentes do divisomo para o sítio onde o septo será sintetizado na célula. A formação do anel Z é modulada por proteínas que se ligam diretamente a FtsZ e regulam a sua auto-associação, tanto induzindo como inibindo a sua polimerização. Apesar de muitos destes moduladores de FtsZ já serem conhecidos, muito pouco se sabe sobre o mecanismo pelo qual eles controlam a estruturação do anel Z in vivo. O objetivo do presente trabalho foi estudar a interação entre FtsZ e um modulador de divisão, a proteína ZapA, da bactéria gram-positiva Bacillus subtilis. Para isso construímos uma biblioteca de mutantes de ftsZ por \"Error Prone PCR\", com aproximadamente 1 substituição por cópia de ftsZ e contendo um total de 1x105 clones. A partir dessa biblioteca, utilizamos duas triagens genéticas para identificar mutantes incapazes de interagir com ZapA. Na primeira estratégia, selecionamos 12 mutantes de FtsZ resistentes à superexpressão de uma forma tóxica de ZapA, que bloqueia a divisão, causando filamentação e morte das células. Surpreendentemente, apesar destes mutantes serem insensíveis ao efeito de ZapA, ensaios citológicos mostraram que nenhum deles perdeu a interação com ZapA. Como as mutações foram mapeadas nas vizinhanças do sítio catalítico e de polimerização de FtsZ, e como a maioria delas confere resistência cruzada aos efeitos de outros moduladores de FtsZ, suspeitamos que elas afetassem a estabilidade do polímero de FtsZ e, consequentemente, o comportamento do anel Z. Essas suspeitas foram confirmadas em ensaios de FRAP e cálculos de proporção de FtsZ no anel Z, indicando que os mutantes formam um anel Z mais estável que o normal. Como não obtivemos mutantes que perderam a interação com ZapA na primeira triagem, aplicamos a biblioteca em uma segunda estratégia de triagem genética, procurando um mutante de FtsZ que voltasse a interagir com um mutante de ZapA que não se liga mais a FtsZ (ZapAN62A). Esta estratégia de ganho de função identificou um candidato, FtsZE91V , que, tanto por critérios genéticos como citológicos, voltou a interagir com ZapAN62A. Apesar do mutante FtsZE91V mostrar-se capaz de restaurar a interação com ZapAN62A, ele não afetou a interação com ZapA selvagem, segundo nossos ensaios de microscopia de fluorescência e viabilidade. O mutante FtsZE91V, mapeia na hélice H3 de FtsZ. Esta hélice está exposta na superfície de FtsZ (compõe um dos lados da molécula de FtsZ) de uma maneira compatível com a idéia de que ela seria importante para interações laterais entre polímeros de FtsZ. Nossos resultados apontam, portanto, que a hélice H3 deve ser o sítio de interação para ZapA em FtsZ. / The bacterial cytokinesis is ruled by a number of proteins that constitute the divisome complex. FtsZ, a homologue of eukaryotic tubulin, is the main component of the divisome and self-associates in a structure named Z ring. The Z ring works as a scaffold and recruits the other components of divisome, establishing itself where the septum will be synthesized in the cell. Some of these proteins interact directly with FtsZ and control self-association, promoting polymerization or preventing it. Although there have been discovered many of FtsZ modulators, little is known about the mechanisms that control the formation of the Z ring in vivo. The aim of this work was study de interaction between FtsZ e one of its division modulators, ZapA protein, on Bacillus subtilis grampositive bacteria. We created a mutagenized ftsZ plasmid library by error prone PCR, which contained 1,0x105 transformants and exhibited a mutation rate of one substitution per ftsZ copy. The library was transformed into a modified Bacillus subtilis strain and we performed two genetic screenings to select cells with FtsZ mutants incapable of interacting with ZapA. In first strategy, we selected 12 resistant ftsZ mutants for a toxic ZapA overexpression, that blocked division and caused filamentation and cell death. Surprisingly, although these mutants were insensitive to ZapA effect, cytological assays showed that none of them lost interaction with ZapA. As the substitutions were mapped around the catalytic and interaction site of FtsZ structure and showed resistance to other modulators, we suspected that the mutations were affecting the polymer stability of FtsZ and, consequently, the behavior of Z ring. This hypothesis was confirmed by FRAP experiments and by calculations of FtsZ proportions in Z ring, pointing out that the mutants form more stable Z rings. As we didnt\' find mutants that lost their ZapA´s interaction, we applied our library in a second genetic screen, looking for mutants that return to interact with a ZapA mutant (ZapAN62A) that doesn´t bind to FtsZ anymore. This gain of function strategy identified one candidate, FtsZE91V, which returns to interact with ZapAN62A in our genetic and cytological assays. Although the mutant FtsZE91V showed itself capable to interact with ZapAN62A, that didn´t affect the interaction with wild type ZapA by our fluorescent microscopy and viability assays. The substitution E91V was mapped on H3 helix of FtsZ structure. This helix is exposed on FtsZ surfaces (on FtsZ´s lateral side), being compatible with the idea that lateral interaction is important in FtsZ polymers. So, we concluded that helix H3 is the binding site of ZapA in FtsZ.
30

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

José Roberto Tavares 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.

Page generated in 0.0268 seconds