Spelling suggestions: "subject:"fts"" "subject:"ftse""
11 |
Estudo do papel de MinD na ativação de MinC, um regulador chave na divisão bacteriana em Bacillus subtilis / Genetic and biochemistry study of the role of MinD in MinC activation, a key regulator in bacterial division in Bacillus subtilisPariente, Jhonathan Stivins Benites 16 October 2015 (has links)
A divisão bacteriana é efetuada por um complexo macromolecular conhecido como divisomo. Um componente central do divisomo é FtsZ, uma proteína homóloga de tubulina que se polimeriza no meio da célula formando uma estrutura em forma de anel (anel Z). O controle da divisão é exercido por proteínas que modulam a habilidade de FtsZ de formar o anel Z. Dois fatores principais estão envolvidos na seleção do correto sitio de divisão. O melhor estudado é o sistema Min, o qual é responsável pelo bloqueio específico de sítios de divisão não desejados nos polos da célula. O componente do sistema Min que inibe a polimerização de FtsZ é a proteína MinC e é sabido que MinC requer MinD para se ativar, mas o mecanismo dessa ativação não está completamente compreendido. No presente trabalho investigamos o papel da associação de MinD à membrana na ativação de MinC. Usando um mutante que não mais se associa à membrana (MinDΔMTS) mostramos que o efeito de MinC em inibir a divisão celular é altamente dependente de seu recrutamento à membrana por MinD. No entanto, ensaios in vitro mostraram que o complexo MinCDΔMTS é mais eficiente em desfazer polímeros de FtsZ que MinC sozinho, indicando que MinD promove a ativação de MinC por outro mecanismo além de recrutamento à membrana. Esta ativação pode resultar de um efeito alostérico ou da criação de um sítio para FtsZ na interface do complexo MinCD, porém resultados preliminares não conseguiram detectar aumento da afinidade de MinC por FtsZ quando na presença de MinD. / Bacterial division is performed by a macromolecular complex known as the divisome. The central component of the divisome is FtsZ, a tubulin protein homolog, which polymerizes at the mid-cell forming a ring-like structure (Z-ring). This division is regulated by proteins that modulate ability of FtsZ to form the Z-ring. Two principal factors are involved in selecting the correct site of division. The best-studied factor is the Min system, which is responsible for the specific blockade of unwanted potential sites in the cell poles. The component of the Min system that inhibits FtsZ polymerization is the MinC protein. MinC requires the MinD protein for activation, but the mechanism of this activation is not completely understood. Here, we investigate the role of the association of MinD to the membrane during MinC activation. Using a mutant that does not interact with the membrane (MinDΔMTS) we show that the effect of MinC in inhibiting cell division is highly dependent on its recruitment to the membrane by MinD. However, in vitro assays show that MinCDΔMTS is more efficient in disrupting FtsZ polymers than MinC alone, indicating that MinD promotes MinC activation by a mechanism other than membrane recruitment. This activation could be due to an allosteric effect or the formation of a site for FtsZ on the MinCD interface; however, preliminary results could not detect any increase in the affinity of FtsZ to MinC in the presence of MinD.
|
12 |
Estrutura e mecanismos de MciZ, um capeador da extremidade menos de FtsZ em Bacillus subtilis / Structure and mechanisms of MciZ, a Minus end capper of FtsZ in Bacillus subtilisAlexandre Wilson Bisson Filho 24 March 2014 (has links)
FtsZ é homóloga de tubulina, presente em quase todas as bactérias, que se autoassocia em filamentos que formam uma estrutura chamada anel Z dentro das células. O anel Z quando formado recruta de um macrocomplexo proteico chamado divisomo, que é responsável pela síntese do septo de divisão, formando duas células filhas. Diversos moduladores se ligam diretamente a FtsZ regulam sua polimerização, controlando o momento e o local onde o anel Z é formado. MciZ é um peptídeo de 40 aminoácidos expresso durante a esporulação de Bacillus subtilis e inibe a formação do do anel Z na célula mãe. O objetivo do presente trabalho foi estudar a interação entre as proteínas FtsZ e MciZ e investigar os mecanismos envolvidos na inibição da polimerização de FtsZ por MciZ. Através de uma triagem genética, usando uma biblioteca de mutantes de ftsZ, identificamos treze mutações em ftsZ que conferiram resistência à superexpressão de MciZ in vivo. Sete delas eram capazes de crescer na presença e na ausência da superexpressão de MciZ e as outras seis se mostraram dependentes da superexpressão de MciZ. A partir da coexpressão e copurificação do complexo FtsZ:MciZ, observamos que todas as proteínas mutantes ainda continuavam interagindo com MciZ in vitro. O Kd estimado para a interação entre as proteínas foi de 150±50nM, e mostrou-se que MciZ não se liga nem ao CTP (C-Terminal Peptide) de FtsZ, nem compete com GTP para a ligação no mesmo sítio. Usando construções truncadas de MciZ, determinou-se que o N-terminal da proteína (resíduos 1 ao 27) é suficiente para inibição. A partir das estruturas tridimensionais de MciZ (RMN) e do complexo FtsZ:MciZ (cristalografia de raios x), determinou-se que MciZ é um peptídeo desenovelado, que assume uma estrutura terciária ao interagir através da sua α-hélice H2 e folha-β B2 com a α-hélice H10 e a folha-β S9 de FtsZ. MciZ mostrou-se capaz de reduzir o tamanho dos protofilamentos de FtsZ de forma subestequiométrica, gerando fragmentos menores de filamentos. Proporções de MciZ:FtsZ de 1:10 foram suficientes para extinguir completamente o anel Z, confirmando a inibição subestequiométrica também in vivo. A conservação da inibição da fusão FtsZ-MciZ e a cinética de despolimerização de FtsZ induzida por MciZ provaram que MciZ não é um simples sequestrador. Marcações fluorescentes de MciZ sugeriram que o peptídeo é capaz de interagir com o anel Z in vivo, e também decorar feixes de FtsZ in vitro, formando focos localizados frequentemente na ponta dos filamentos. Cossedimentações com polímeros de FtsZ mostraram a presença de MciZ ou da fusão FtsZ-MciZ. Apesar de MciZ induzir o aumento da atividade GTPáscia específica de FtsZ, a ausência de hidrólise de GTP não eliminou o efeito subestequiométrico de MciZ. Nossos resultados em conjunto mostram que MciZ é um capeador dos filamentos de FtsZ, bloqueando a elongação pela ponta menos e bloqueando o anelamento entre protofilamentos / FtsZ is a tubulin-like protein present in most bacteria, that self-assembles into filaments forming a structure known as Z-ring in the cells. Following formation, the Z- ring recruits a protein macrocomplex, the divisome, which is responsible by the division septum synthesis, resulting in two daughter cells. Many modulators interact directly to FtsZ, regulating its polymerization and controlling the time and place of the Z-ring formation. MciZ is a 40-amino-acid peptide that is expressed during sporulation in Bacillus subtilis and inhibits the formation of the Z-ring in the mother-cell. The aim of this work was to study the interaction between FtsZ and MciZ proteins, and to investigate the mechanisms involved in FtsZ inhibition by MciZ. Applying a genetic screening, using an ftsZ mutant library, we identified 13 mutations on ftsZ that conferred resistance to MciZ overexpression in vivo. Seven of them were able to grow either in the presence or absence of MciZ overexpression, and the other six showed to be dependent on it. With the co-expression and co-purification of the FtsZ:MciZ complex, we observed all mutant proteins still interact with MciZ in vitro. Estimated Kd for the interaction was 150±50nM, and it was demonstrated that MciZ does not bind to FtsZ CTP (C-Terminal Peptide), nor does it compete with GTP for the same binding site. Using truncated versions of MciZ, it was determined that its N-terminal (residues 1 to 27) is sufficient for the inhibition. Based on the tridimensional structure of MciZ (NMR) and of the FtsZ:MciZ complex (x- ray crystallography), it was determined that MciZ is an unstructured peptide that assumes a tertiary structure by interacting with FtsZ α-helix H10 and β-sheet S9 through its α-helix H2 and β-sheet B2. MciZ was able to reduce the size of FtsZ protofilaments in a substoichiometric manner, generating smaller fragmented filaments. 1:10 ratios of MciZ:FtsZ were sufficient to completely extinguish the Z-ring, thus confirming the substoichiometric inhibition in vivo as well. The inhibition of FtsZ polymerization by the FtsZ-MciZ fusion and the FtsZ depolymerization kinetics induced by MciZ proved that MciZ is not a simple sequesterer. Fluorescent dyeing of MciZ suggests the peptide is able to interact with the Z-ring in vivo, as well as decorate FtsZ bundles in vivo, forming localized spots frequently at the filaments\' ends. Co- sedimentations with FtsZ polymers showed the presence of MciZ or of the FtsZ-MciZ fusion. Despite MciZ-induced increase in specific GTPase activity of FtsZ, the lack of GTP hydrolysis did not eliminate the substoichiometric effect of MciZ. Combined, our results show that MciZ is an FtsZ filament capper, blocking elongation at the minus end and blocking the annealing between protofilaments
|
13 |
Estrutura e mecanismos de MciZ, um capeador da extremidade menos de FtsZ em Bacillus subtilis / Structure and mechanisms of MciZ, a Minus end capper of FtsZ in Bacillus subtilisBisson Filho, Alexandre Wilson 24 March 2014 (has links)
FtsZ é homóloga de tubulina, presente em quase todas as bactérias, que se autoassocia em filamentos que formam uma estrutura chamada anel Z dentro das células. O anel Z quando formado recruta de um macrocomplexo proteico chamado divisomo, que é responsável pela síntese do septo de divisão, formando duas células filhas. Diversos moduladores se ligam diretamente a FtsZ regulam sua polimerização, controlando o momento e o local onde o anel Z é formado. MciZ é um peptídeo de 40 aminoácidos expresso durante a esporulação de Bacillus subtilis e inibe a formação do do anel Z na célula mãe. O objetivo do presente trabalho foi estudar a interação entre as proteínas FtsZ e MciZ e investigar os mecanismos envolvidos na inibição da polimerização de FtsZ por MciZ. Através de uma triagem genética, usando uma biblioteca de mutantes de ftsZ, identificamos treze mutações em ftsZ que conferiram resistência à superexpressão de MciZ in vivo. Sete delas eram capazes de crescer na presença e na ausência da superexpressão de MciZ e as outras seis se mostraram dependentes da superexpressão de MciZ. A partir da coexpressão e copurificação do complexo FtsZ:MciZ, observamos que todas as proteínas mutantes ainda continuavam interagindo com MciZ in vitro. O Kd estimado para a interação entre as proteínas foi de 150±50nM, e mostrou-se que MciZ não se liga nem ao CTP (C-Terminal Peptide) de FtsZ, nem compete com GTP para a ligação no mesmo sítio. Usando construções truncadas de MciZ, determinou-se que o N-terminal da proteína (resíduos 1 ao 27) é suficiente para inibição. A partir das estruturas tridimensionais de MciZ (RMN) e do complexo FtsZ:MciZ (cristalografia de raios x), determinou-se que MciZ é um peptídeo desenovelado, que assume uma estrutura terciária ao interagir através da sua α-hélice H2 e folha-β B2 com a α-hélice H10 e a folha-β S9 de FtsZ. MciZ mostrou-se capaz de reduzir o tamanho dos protofilamentos de FtsZ de forma subestequiométrica, gerando fragmentos menores de filamentos. Proporções de MciZ:FtsZ de 1:10 foram suficientes para extinguir completamente o anel Z, confirmando a inibição subestequiométrica também in vivo. A conservação da inibição da fusão FtsZ-MciZ e a cinética de despolimerização de FtsZ induzida por MciZ provaram que MciZ não é um simples sequestrador. Marcações fluorescentes de MciZ sugeriram que o peptídeo é capaz de interagir com o anel Z in vivo, e também decorar feixes de FtsZ in vitro, formando focos localizados frequentemente na ponta dos filamentos. Cossedimentações com polímeros de FtsZ mostraram a presença de MciZ ou da fusão FtsZ-MciZ. Apesar de MciZ induzir o aumento da atividade GTPáscia específica de FtsZ, a ausência de hidrólise de GTP não eliminou o efeito subestequiométrico de MciZ. Nossos resultados em conjunto mostram que MciZ é um capeador dos filamentos de FtsZ, bloqueando a elongação pela ponta menos e bloqueando o anelamento entre protofilamentos / FtsZ is a tubulin-like protein present in most bacteria, that self-assembles into filaments forming a structure known as Z-ring in the cells. Following formation, the Z- ring recruits a protein macrocomplex, the divisome, which is responsible by the division septum synthesis, resulting in two daughter cells. Many modulators interact directly to FtsZ, regulating its polymerization and controlling the time and place of the Z-ring formation. MciZ is a 40-amino-acid peptide that is expressed during sporulation in Bacillus subtilis and inhibits the formation of the Z-ring in the mother-cell. The aim of this work was to study the interaction between FtsZ and MciZ proteins, and to investigate the mechanisms involved in FtsZ inhibition by MciZ. Applying a genetic screening, using an ftsZ mutant library, we identified 13 mutations on ftsZ that conferred resistance to MciZ overexpression in vivo. Seven of them were able to grow either in the presence or absence of MciZ overexpression, and the other six showed to be dependent on it. With the co-expression and co-purification of the FtsZ:MciZ complex, we observed all mutant proteins still interact with MciZ in vitro. Estimated Kd for the interaction was 150±50nM, and it was demonstrated that MciZ does not bind to FtsZ CTP (C-Terminal Peptide), nor does it compete with GTP for the same binding site. Using truncated versions of MciZ, it was determined that its N-terminal (residues 1 to 27) is sufficient for the inhibition. Based on the tridimensional structure of MciZ (NMR) and of the FtsZ:MciZ complex (x- ray crystallography), it was determined that MciZ is an unstructured peptide that assumes a tertiary structure by interacting with FtsZ α-helix H10 and β-sheet S9 through its α-helix H2 and β-sheet B2. MciZ was able to reduce the size of FtsZ protofilaments in a substoichiometric manner, generating smaller fragmented filaments. 1:10 ratios of MciZ:FtsZ were sufficient to completely extinguish the Z-ring, thus confirming the substoichiometric inhibition in vivo as well. The inhibition of FtsZ polymerization by the FtsZ-MciZ fusion and the FtsZ depolymerization kinetics induced by MciZ proved that MciZ is not a simple sequesterer. Fluorescent dyeing of MciZ suggests the peptide is able to interact with the Z-ring in vivo, as well as decorate FtsZ bundles in vivo, forming localized spots frequently at the filaments\' ends. Co- sedimentations with FtsZ polymers showed the presence of MciZ or of the FtsZ-MciZ fusion. Despite MciZ-induced increase in specific GTPase activity of FtsZ, the lack of GTP hydrolysis did not eliminate the substoichiometric effect of MciZ. Combined, our results show that MciZ is an FtsZ filament capper, blocking elongation at the minus end and blocking the annealing between protofilaments
|
14 |
Estudo do papel de MinD na ativação de MinC, um regulador chave na divisão bacteriana em Bacillus subtilis / Genetic and biochemistry study of the role of MinD in MinC activation, a key regulator in bacterial division in Bacillus subtilisJhonathan Stivins Benites Pariente 16 October 2015 (has links)
A divisão bacteriana é efetuada por um complexo macromolecular conhecido como divisomo. Um componente central do divisomo é FtsZ, uma proteína homóloga de tubulina que se polimeriza no meio da célula formando uma estrutura em forma de anel (anel Z). O controle da divisão é exercido por proteínas que modulam a habilidade de FtsZ de formar o anel Z. Dois fatores principais estão envolvidos na seleção do correto sitio de divisão. O melhor estudado é o sistema Min, o qual é responsável pelo bloqueio específico de sítios de divisão não desejados nos polos da célula. O componente do sistema Min que inibe a polimerização de FtsZ é a proteína MinC e é sabido que MinC requer MinD para se ativar, mas o mecanismo dessa ativação não está completamente compreendido. No presente trabalho investigamos o papel da associação de MinD à membrana na ativação de MinC. Usando um mutante que não mais se associa à membrana (MinDΔMTS) mostramos que o efeito de MinC em inibir a divisão celular é altamente dependente de seu recrutamento à membrana por MinD. No entanto, ensaios in vitro mostraram que o complexo MinCDΔMTS é mais eficiente em desfazer polímeros de FtsZ que MinC sozinho, indicando que MinD promove a ativação de MinC por outro mecanismo além de recrutamento à membrana. Esta ativação pode resultar de um efeito alostérico ou da criação de um sítio para FtsZ na interface do complexo MinCD, porém resultados preliminares não conseguiram detectar aumento da afinidade de MinC por FtsZ quando na presença de MinD. / Bacterial division is performed by a macromolecular complex known as the divisome. The central component of the divisome is FtsZ, a tubulin protein homolog, which polymerizes at the mid-cell forming a ring-like structure (Z-ring). This division is regulated by proteins that modulate ability of FtsZ to form the Z-ring. Two principal factors are involved in selecting the correct site of division. The best-studied factor is the Min system, which is responsible for the specific blockade of unwanted potential sites in the cell poles. The component of the Min system that inhibits FtsZ polymerization is the MinC protein. MinC requires the MinD protein for activation, but the mechanism of this activation is not completely understood. Here, we investigate the role of the association of MinD to the membrane during MinC activation. Using a mutant that does not interact with the membrane (MinDΔMTS) we show that the effect of MinC in inhibiting cell division is highly dependent on its recruitment to the membrane by MinD. However, in vitro assays show that MinCDΔMTS is more efficient in disrupting FtsZ polymers than MinC alone, indicating that MinD promotes MinC activation by a mechanism other than membrane recruitment. This activation could be due to an allosteric effect or the formation of a site for FtsZ on the MinCD interface; however, preliminary results could not detect any increase in the affinity of FtsZ to MinC in the presence of MinD.
|
15 |
Reconstitution of bacterial cytokinesis: the Z-ringArumugam, Senthil 07 November 2012 (has links)
Prokaryotic cell division is one of the most fundamental processes in biology, but the dynamics and mechanics are far from being understood. In many bacteria, FtsZ, a tubulin homologue assembles into a ring-like structure – Z-ring at precisely the middle of the cell. This accurate site selection is dependent on the Min proteins. Min D and MinE self-organise into waves in vitro, and oscillate pole to pole in vivo. MinC is thought to couple the Min oscillations to FtsZ by direct interaction. The mechanism of inhibitory action of MinC on FtsZ assembly is not known. Critical to the understanding of regulation of FtsZ by MinC and other proteins and its probable role in force generation is the organisation, structure and the dynamics of the Z-ring. Current models of the FtsZ filament organization in the Z-ring argue between two different structures – (i) short overlapping protofilaments with lateral interactions and (ii) few long annealed protofilaments with or without lateral contacts.
Our observations of the characteristics of polymerization and turnover studies using fluorescence microscopy suggest that the FtsZ filament is a continuous and irresolute bundle. The results are consistent with a structure where the turnover happens throughout, and any specialised structure resulting in a GTP cap like structure can be ruled out. We show that the turnover rates and hydrolysis rates are similar arguing for a model in which subunit leaves as soon as it hydrolyses GTP. On the basis of crystal structures, we cloned the N-terminal of FtsZ, which acts as a C-terminal end capping fragment and is able to interact with monomers. The end-capping fragment, NZ can disassemble the FtsZ polymers, without influencing the GTPase activity, offering a comparable standard for the activity of MinC. On the basis of our observations, we propose a model on how MinC can disassemble FtsZ polymers. Furthermore, our data shows that the Min CDE system is sufficient to cause spatial regulation of FtsZ provided FtsZ is dynamic.
How the Z-ring takes the form of a functional helical or ring-like structure remains unclear. Extensive modelling approaches have tried to explain the ring formation and force generation. Previous studies have qualitatively shown bending of liposome membranes by FtsZ filaments. We hypothesised that the presumably intrinsically curved filaments should respond to pre-curved substrates, and the alignment should be quantifiable. This should ascertain whether or not FtsZ has intrinsic curvature and/or actively induces any force. Thus, we investigated how FtsZ filaments respond to a range of curvatures, which mimic different stages of the division process.
Our results show that the FtsZ filaments possess intrinsic curvatures as well as spontaneous twist. This facilitates the formation of Z-ring by utilizing geometrical cues. Our results are in agreement with consistent helical FtsZ polymers observed in vivo by Cryo-EM or super resolution microscopy. The alignment of filaments over a range of curvature suggests that the filaments have considerable flexibility, which strongly suggests reconsidering possible mechanisms of force generation. Moreover, the developed assay constitutes a valuable platform to further study proteins involved in modifying curvature of FtsZ filaments.
In summary, by reconstituting the FtsZ filament in vitro, we have elucidated the nature of FtsZ filaments. The dynamics of FtsZ filaments allows them to be inhibited by MinC, thus cooperating with the Min waves. The presence of intrinsic curvature and twist facilitates their formation into a ring necessary for the cell to carry out cytokinesis.
|
16 |
Etude de la morphogénèse et de la division chez Streptococcus pneumoniae par microscopie de localisation de molécule unique / Morphogenesis and division in Streptococcus pneumoniaeArthaud, Christopher 18 October 2018 (has links)
La morphogénèse des ovocoques, dont fait partie le pathogène humain Streptococcus pneumoniae, implique des processus d’élongation et de division associés à la synthèse de la paroi bactérienne. Le composant majeur de cette paroi est le peptidoglycane, un polymère de sucre réticulé par des chaines peptidiques, qui confère la forme de la bactérie et est essentiel à sa survie. La synthèse de peptidoglycane nécessaire à l’élongation et la division bactérienne est effectuée par des complexes protéiques appelés respectivement « élongasome » et « divisome ». Les mécanismes d’assemblage et l’activité de ces complexes dans la cellule bactérienne restent encore non élucidés. Pour imager l’activité des complexes de synthèse du peptidoglycane in vivo à l’échelle du nanomètre, j’ai développé une méthode faisant appel à des dérivés de D-amino acides, à la chimie click et à la microscopie de localisation de molécules uniques (dSTORM ou direct Stochastic reconstruction microscopy). Cette méthode a permis d’obtenir des images à une résolution d’environ 20 nm, révélant des aspects inattendus de la synthèse du peptidoglycane et remettant en question le rôle de certaines protéines dans la morphogenèse du pneumocoque. En combinant ces observations avec les données de la littérature, un modèle simplifié de la morphogénèse des ovocoques est proposé. / The morphogenesis of ovovcocci, which include the human pathogen Streptococcus pneumoniae, involves elongation and division processes associated with cell wall synthesis. The main component of the cell wall is the peptidoglycan, a polymer made of glycan chains cross-linked by peptide chains, which confers the bacterial shape and is essential for cell survival. Peptidoglycan synthesis required for cell elongation and division is performed by large protein complexes called “elongasome” and “divisome”, respectively. The assembly mechanisms and activity of these complexes in the bacterial cell remain mysterious. To image the activity of the peptidoglycan synthesis complexes in vivo at the nanoscale, I developed a method combining D-amino acid derivatives, click chemistry and single-molecule localization microscopy (dSTORM or direct Stochastic reconstruction microscopy). This method allowed obtaining images at a resolution of about 20 nm resolution, revealing unexpected features of peptidoglycan synthesis and challenging the role of some proteins in pneumococcus morphogenesis. By combining these observations with data from the literature, a simplified model of ovococci morphogenesis is proposed.
|
17 |
The identification and characterisation of novel antimicrobial targets in Burkholderia pseudomalleiMarshall, Laura Emma January 2012 (has links)
The bacterium Burkholderia pseudomallei causes the disease melioidosis, a significant public health threat in endemic regions and is a potential biowarfare agent. Treatment of melioidosis is intensive and prolonged and there is no licensed vaccine to protect against it. The aim of this study was to characterise novel targets for antimicrobials to improve treatment of melioidosis. A holistic down selection process was undertaken in order to identify a range of possible novel and exploitable antimicrobial targets in Burkholderia pseudomallei. Four targets: FtsA, FtsZ, MraW and TonB were selected for characterisation by mutagenesis study. FtsA and FtsZ are early effectors of cell division and are considered potential antimicrobial drug targets in other pathogenic bacteria. Genes for both were shown likely to be essential for viability in Burkholderia pseudomallei, following attempted deletion of the genes, thus confirming their potential for drug targeting for treatment of melioidosis. MraW, a highly conserved methyltransferase, and TonB, the energiser for high affinity iron uptake in Gram negative bacteria, were also selected for characterisation as antimicrobial targets. In-frame deletions of the genes encoding these targets were constructed in B. pseudomallei K96243. In order to determine the roles played by MraW and TonB during infection, these mutants were characterised in several models of Burkholderia pseudomallei infection. Deletion of mraW rendered the bacteria non-motile and led to attenuation during infection of Balb/C mice. A small growth defect was seen early during infection of macrophages by this mutant, whilst no attenuation was seen on deletion of mraW in Galleria mellonella. Burkholderia pseudomallei ΔtonB required free iron supplementation for growth. This mutant had an improved ability to invade murine macrophages, though the mutant was attenuated in both Galleria mellonella and Balb/C mice. Attenuation of both mutants in a mammalian model of infection, support the strategy to target either of these proteins as novel targets for inhibition with small molecules during Burkholderia pseudomallei infection. However, an improved ability to infect macrophages by Burkholderia pseudomallei ΔtonB and non-complementation of this mutant by iron supplementation to Galleria mellonella suggests additional roles to iron uptake alone for TonB in Burkholderia pseudomallei, such as bacterial iron sensing and signalling.
|
18 |
Replication-dependent Z-ring formation (RDZ) : interruption of DNA replication blocks cell division independently of nucleoid occlusion and the SOS response in E. coli / Interruption of DNA replication blocks cell division independently of nucleoid occlusion and the SOS response in E. coliCambridge, Joshua Marc 06 February 2012 (has links)
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. Two components of this coordination are the SOS system and nucleoid occlusion. The SOS regulon expresses DNA repair genes after DNA damage and delays FtsZ-ring formation and cell division to enhance survival. Nucleoid occlusion prevents cell division over un-replicated nucleoids, a process partially dependent on the SlmA protein. Z-ring formation is shown here to be dependent on DNA replication by an additional mechanism, independent of the SOS regulon and of the SlmA protein and which acts by preventing FtsZ-ring formation when replication is perturbed. Replication dependent Z-ring formation (RDZ) was shown to be SOS-independent by the fact that FtsZ-rings were inhibited, after replication blockage, in a lexA1 mutant and in strains containing a null allele of sulA or the ftsZ/sulB103 mutation. SlmA protein-independence was shown by the fact that FtsZ-rings were also inhibited in lexA1 [Delta]slmA double mutants after replication blockage. This SOS- and SlmA-independent mechanism functions effectively in cells growing slowly with only one replicating chromosome and also in cells growing rapidly with multi-fork replication and after replication inhibition by different methods - chemical inhibitors and a temperature-sensitive polymerization mutation. / text
|
19 |
Investigation of Hydrocarbon Stapled Alpha-Helical Peptides as a Novel Method to Interrupt Protein-Target Interactions in BacteriaPau, Daniel January 2016 (has links)
With the increasing threat of multidrug resistant bacteria, there is a growing need to invent new drug classes that combat untreatable infections. Small molecule antibiotics have been successful in the past, but humanity is now losing the arms race against previously treatable pathogens. However, the number of clinically approved drugs targeting traditionally undruggable targets in bacteria remains low. New targets of complex protein-target interactions must be targeted for future pharmacological development. In an effort to create clinically viable biologics, the Verdine lab has developed a class of therapeutics called hydrocarbon stapled α-helical peptides; these peptides are known to affect protein-protein interactions by retaining secondary structure in vivo. Although this class of molecules has been extensively researched in cancer and viral therapies, there has been little work in bacteria due to the proposed endocytic method of entry. Moreover, DNA-binding stapled peptides have not been extensively investigated due the complexities in designing a peptide with gene selectivity. In an attempt to study peptides in bacteria, two stapled peptides based on the RpoN domain of σ54 and the FtsZ C-terminus have been synthesized. σ 54 is a DNA-binding co-factor of RNA polymerase (RNAP) and has been shown to regulate virulence and nitrogen and carbon metabolism. FtsZ is the structural unit of the contractile Z-ring that induces cell division. By designing stapled α-helical peptides to target these untraditional PPIs, we anticipate that these molecules may be used for future antimicrobial pharmacological development that treat multidrug resistant bacteria.
|
20 |
Le système multiprotéique ORP spécifique de l'anaérobiose : mécanisme de régulation et fonction chez Desulfovibrio vulgaris Hildenborough / The multiprotein ORP system specific of anaerobiosis : regulation mechanism and function in Desulfovibrio vulgaris HildenboroughFievet, Anouchka 11 December 2014 (has links)
Environ 30% des CDS prédits d'un génome code pour des protéines de fonction inconnue ou hypothétiques. La compréhension du rôle de ces protéines est donc l'un des grands challenges de la communauté scientifique.L'objectif principal de cette thèse est de comprendre la fonction de six protéines de fonction inconnue spécifiques de l'anaérobiose formant un complexe, appelé complexe ORP chez Desulfovibrio vulgaris Hildenborough (DvH). Ce système est répandu dans de nombreuses espèces anaérobies, et certaines de ses protéines possèdent des homologies significatives avec des protéines impliquées dans la division cellulaire.Des outils de microscopie dédiés à l'anaérobiose ont été développés au cours de cette thèse et ont permis, pour la première fois, l'observation du cycle cellulaire de DvH. L'étude de l'effet de l'oxygène à l'échelle de la cellule unique a montré une inhibition réversible de la division cellulaire en présence d'oxygène révélant une nouvelle stratégie impliquée dans l'aérotolérance de DvH.Chez DvH, le complexe ORP est codé par des gènes organisés en deux opérons divergents, orp1 et orp2, dont la transcription est gouvernée par l'ARN polymérase sigma54, le facteur de transcription IHF et l'activateur de transcription DVU2106.La diminution de la quantité de complexe ORP conduit à une hétérogénéité de la taille des cellules en accord avec un rôle potentiel du complexe dans le contrôle de la division cellulaire. Alors que l'absence de certaines protéines ORP n'affecte pas de manière significative la division de la bactérie en anaérobiose, la protéine DVU2109 présente une localisation dynamique au cours du cycle cellulaire et semble être essentielle chez DvH. / Up to now, approximately 30% of the predicted CDS in genomes encode for hypothetical or unknown function proteins. Understanding the role and the function of these proteins is now a major challenge for the scientific community.The main objective of this thesis is to determine the function of six proteins of unknown function specific of anaerobiosis and able to forming a multiprotein complex in Desulfovibrio vulgaris Hildenborough (DvH), named the ORP complex. This system is widely found in many anaerobic microorganisms, and some proteins of this system have significant homologies with proteins involved in cell division.Tools for microscopy in anaerobiosis have been developed during this thesis and have allowed observation, for the first time, of a complete DvH cell cycle. The study of oxygen effect on DvH at a single cell level has showed a reversible inhibition of cell division during oxygen exposure revealing a new strategy involved in DvH aerotolerance.In DvH, the ORP complex is encoding by genes organized in two divergent operons, orp1 and orp2, whose transcription is governed by sigma 54 RNA polymerase, the transcription factor IHF and the transcriptional regulator DVU2106. The decreased in the amount of ORP complex leads to heterogeneity of the cell size in accordance with a potential role of this complex in the spatio-temporal control of DvH cell division. While the absence of the majority of ORP proteins doesn't significantly affect DvH division in anaerobic conditions, the protein DVU2109 has a dynamic location during cell cycle and appears to be essential in the cell.
|
Page generated in 0.0421 seconds