• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 593
  • 177
  • 130
  • 58
  • 40
  • 35
  • 27
  • 20
  • 13
  • 9
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 1296
  • 1296
  • 264
  • 228
  • 182
  • 178
  • 177
  • 168
  • 164
  • 163
  • 145
  • 145
  • 140
  • 137
  • 131
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Análise técnica e econômica do uso do hidrogênio como meio armazenador de energia elétrica proveniente de fontes eólicas / Technical and economic analysis of the use of hydrogen as a means to store energy from wind power sources

Furlan, André Luís 20 August 2018 (has links)
Orientadores: Ennio Peres da Silva, Newton Pimenta Neves Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-20T12:25:52Z (GMT). No. of bitstreams: 1 Furlan_AndreLuis_D.pdf: 2850462 bytes, checksum: cf9586ce36bd523119ff4727d43989f7 (MD5) Previous issue date: 2012 / Resumo: Este trabalho faz uma análise técnico-econômica do uso do hidrogênio como meio armazenador de energia elétrica proveniente de fonte eólica, cuja natureza imprevisível do vento não pode garantir sua quantidade de energia elétrica ofertada. Para resolver este problema, foram propostos dois sistemas de armazenamento operando de modos diferentes, para os quais foi desenvolvido um modelo matemático para o dimensionamento deles, implementado numa planilha eletrônica, no qual foram consideradas as principais características e eficiências dos equipamentos que compõem os sistemas, bem como a garantia física característica da usina eólica. A seguir, foi realizada uma análise econômica dos sistemas tendo sido verificado que o custo de produção da energia elétrica a partir do primeiro modo de operação proposto foi aproximadamente 47,5% maior que o custo de produção de energia da usina eólica sem armazenamento (130 R$/MWh) e, considerando o segundo modo, a diferença foi 92% maior. No caso da energia elétrica gerada pela célula a combustível o valor obtido foi de 1.180,00 R$/MWh e 1.250,00 R$/MWh considerando, respectivamente, o primeiro e segundo modo de operação / Abstract: The current work aims to present a technical-economical analysis of the use of hydrogen as a means to store energy generated by wind power systems, since the wind regime is unpredictable and thus there is no guarantee for the amount of power offered. First of all, two storage systems were proposed and a mathematical model was established considering the main features and efficiencies of the equipment that compose the systems as well as the wind power energy guarantee. Secondly, an economic analysis of those systems was carried out. The cost of power generation for the first mode of operation was approximately 47,5% larger than that of a similar wind power system without storage (130 R$/MWh) and, concerning the second mode, the power cost was 92% larger. Regarding the energy generated by the fuel cell only, the power cost was respectively 1.180,00 R$/MWh and 1.250,00 R$/MWh for each of the operation modes / Doutorado / Engenharia Mecanica / Doutor em Planejamento de Sistemas Energéticos
592

RENEWABLE CARBON FROM LIGNIN BIOMASS AND ITS ELECTRODE AND CATALYST APPLICATIONS IN BATTERIES, SUPERCAPACITORS, AND FUEL CELLS

demir, muslum 01 January 2017 (has links)
Over the last century, almost all of the carbon materials developed for the energy industry are derived from fossil fuels. The growing global concerns about energy needs, fossil fuels consumption, and the related environmental issues have motived scientists to find new, green and sustainable energy resources such as the wind, solar and biomass energy. Essentially, biomass-derived materials can be utilized in energy storage and conversion devices such as Li-ion batteries, fuel cells, and supercapacitors. Among the biomass resources, lignin is a high volume byproduct from the pulp and paper industry and is currently burned to generate electricity and steam. The pulp and paper industry has been searching for high value-added uses of lignin to improve its overall process economics. The importance of manufacturing valuable materials from lignin is, discussed in Chapter 2, demonstrating the need for a facile, green and scalable approach to synthesize bio-char and porous carbon for use in Li-ion batteries. From this context, lignin is first carbonized in water at 300 °C and 103 bar to produce bio-char, which is then graphitized using a metal nitrate catalyst at 900-1100 °C in an inert gas at 1 bar. Graphitization effectiveness of three different catalysts, iron, cobalt and manganese nitrates was examined. The obtained materials were analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both annealing temperature and the catalyst affects the degree of graphitization. High-quality graphitization is obtained by using Mn(NO3)2 at 900 °C or Co(NO3)2 catalysts at 1100 °C. Research on various energy storage materials for supercapacitors has grown rapidly in the recent years. Various advanced materials have been shown as a promising candidate for future’s high-energy supercapacitor electrodes. For a material in a supercapacitor electrode to be considered, it must show promising results for its specific power and energy density, electrical conductivity, surface properties, durability, surface area and pore-size distribution in order to design and develop high-performance supercapacitor devices. The industrial applications of supercapacitors have not been satisfied due to the low energy density (the commercially available supercapacitors have between 5 to 10 times less energy density than that of batteries) and moderate charge-discharge rate of supercapacitor electrode. Thus, chapter 3 was aimed to design and synthesize nitrogen-doped carbon materials that show the characteristic of high-energy and high-power density supercapacitor electrodes with a long cycle life. With this aim, organosol lignin was successfully converted into N-doped carbon materials using a two-step conversion process. The nitrogen content in the carbon was up to 5.6 wt.%. The synthesize materials exhibit high surface area up to 2957 m2/g with micro/meso porosity and a sheet-like structure. The N-doped carbon produced at 850 oC exhibited a high capacitance value of 440 F g-1 at a 1 mV s-1 scan rate and demonstrated excellent cyclic stability over 30,000 cycles in 1 M KOH. In addition, the NC-850 delivers a high energy density of 15.3 W h kg-1 and power density of 55.1 W kg−1 at 1 mV s-1. Therefore, this study suggests that N-doped carbon materials synthesized from a pulp and paper byproduct, lignin, are promising environmentally-sustainable candidates for supercapacitor applications. Challenges for commercialization of fuel cells include high operation cost, inadequate operational stability, and poisoning by H2O2. To address the challenge, costly Pt-based catalysts are needed in order to facilitate the oxygen reduction reaction (ORR) at the cathode and the hydrogen oxidation reaction (HOR) at the anode. In chapter 4, alternative metal-free ORR catalyst materials derived from lignin are studied in order to simultaneously enhance the catalytic activity, lessen the Pt dependency and reduce the excessive costs associated. Calcium sulfonate lignin was successfully converted into sulfur self-doped carbons via in-situ hydrothermal carbonization and followed by post-annealing treatment. The sulfur content in the as-prepared porous carbons is up to 3.2 wt.%. The resulting materials displayed high surface areas (up to 660 m2 g-1) with micro/meso porosity and graphitic/amorphous carbon structure. The as-prepared sulfur self-doped electrode materials (SC-850) were tested as a potential cathodic material for ORR. The number of electrons transferred per molecule was measured to be ~ 3.4 at 0.8 V, which approaches the optimum 4 electron pathway. Additionally, S-doped materials were also applied as a supercapacitor electrode material. The SC-850 electrode exhibited a high specific and volumetric capacitance values of 225 F g-1 and 300 F cm-3 at a scan rate of 0.5 A g-1. The SC-850 electrode also exhibited consistent response over 10,000 cycles at harsh conditions. It was shown that the metal-free SC-850 is a promising electrode material for supercapacitors and ORR applications. All of the studies presented in this dissertation involve the development and application of carbon-based materials derived from lignin and its application towards the Li-ion batteries, supercapacitor, and fuel cell. Insight into the applicability of lignin-derived carbon materials towards electrochemical applications is made readily available, supplemented by detailed physical, chemical and electrochemical characterization, to examine the specific factors influencing the Li-ion batteries, supercapacitor, and electrocatalysis of fuel cell activity.
593

Polyaniline as electrolyte in polymer electrolyte membrane fuel cells

Treptow, Florian January 2005 (has links)
The applications of polyaniline (PAni) for use as electrolyte in Polymer-Electrolyte-Membrane Fuel Cells (PEMFC) were investigated. P Ani was dissolved in N-methyl pyrrolidone (NMP), cast as Emeraldine Base membranes (EB) and then doped with halide acids. The proton conductivity was measured according to Hittorf. The chloride ion distribution within the membrane was evaluated using energy-dispersive-X-ray analysis (EDX) and photometric analysers and the diffusion coefficient was calculated. The specific resistance was determined using conventional 4-point measurement. Halide doped membranes were found to be proton conducting, however, during cell operation halide removal occurred causing a rapid decline in the cell performance. The maximum power density achieved was O.3m W·cm-2 for a 70J.1m thick membrane saturate with chloride between 3,5 and 4,5mgchloride per gPAni. Composite membranes with phosphotungstic acid (PWA), antimonic acid (AA) and zirconium phosphate (ZP) were developed and also tested in a standard measuring fuel cell. While membranes produced via ion exchange (ZP) showed the same result like halide doped ones, AA composite membranes showed a stable voltage and current results. The highest measured outcome of 373.3mW·cm-2 was found with a PWA membrane, produced through dispersing 3g of phosphotungstic acid in 300ml of a 1% polyanilinelNMP solution. It was also observed, that the higher power density was obtained from the fuel cell which uses the lower-loaded membrane. It is clear that a positive effect on the cell performance is given by the addition of phosphotungstic acid to the polyaniline membrane. Therefore, the saturation of PW A have to be taken into account to not lower the power density.
594

The integration of hydrogen energy storage with renewable energy systems

Gammon, Rupert January 2006 (has links)
This thesis concerns the design, implementation and operation of a hydrogen energy storage facility that has been added to an existing renewable energy system at West Beacon Farm, Leicestershire, UK. The hydrogen system consists of an electrolyser, a pressurised gas store and fuel cells. At times of surplus electrical supply, the electrolyser converts electrical energy into chemical energy in the form of hydrogen. This hydrogen is stored until there is a shortage of electrical energy to power the loads on the system, at which point it is reconverted back to electricity by the process of reverse-electrolysis that takes place within a fuel cell. The renewable energy sources, supplying electrical power to domestic and office loads at the site, are photovoltaic, wind and micro-hydroelectric. This work is being carried out through a project, conceived and overseen by the author, known as the Hydrogen and Renewables Integration (HARI) project. The purpose of this study is to demonstrate and gain experience in the integration of hydrogen energy storage with renewable energy systems and, most importantly, to develop software models that could be used for the design of future systems of this type in a range of applications. Effective models have been created and verified against the real-world operation of the system. These models have been largely completed, although some minor details remain unfinished as the are dependant upon studies linked to this one which are yet to be concluded. Subject to some fine tuning that this would entail, then, the models can be used to design a stand-alone, integrated hydrogen and renewable energy system, where only the load profile and weather conditions of a site are known. Significant practical experience has been gained through the design, installation and two years' of operation of the system. Many important insights have been obtained in relation to the integration of the system and the design and operation of its components.
595

Experimental study of ammonia fuel cells

Fournier, Guillaume January 2006 (has links)
The purpose of this thesis was to carry out the experimental study of direct ammonia fuel cells. The use of hydrogen in fuel cells poses a lot of problems. There is a lot of safety, technical and economic issues to be overcome to make its use as a fuel widespread. Ammonia is being considered as a very promising source of hydrogen for fuel cells. However, until now its use in fuel cells has received very little attention. Ammonia presents many advantages over hydrogen and other potential sources of hydrogen such as an easy storage and a world-wide distribution network. Ammonia is a suitable hydrogen carrier and can be easily cracked at high temperatures such as those used in solid oxide fuel cells. The present study was conducting using ammonia as fuel and argon as carrier gas in different solid oxide fuel cell systems: an annular design, a planar design and a micro laminated reactor. The electrolyte materials were calcia stabilized zirconia and yttria stabilized zirconia. As far as the electrodes are concerned, silver, platinum and nickel cermet were used as anode/materials and silver was employed as cathode material. The cell yoltage was measured as function of reactor configuration, space time, ammonia flow rate and ammonia concentration. The results demonstrate the high potential of ammonia over hydrogen when nickel is used as anode material. Solid proton conducting fuel cells operating on ammonia fuel were also studied. The electrolyte materials were fabricated from neodymium and gadolinium doped barium and strontium cerates. The dopant fraction ranged from 1 to 20 wt%. Silver was employed as cathode and anode material and was spray deposited. The application of proton conducting electrolytes results in higher current densities for a given voltage than the using typical oxide ion conductors such as 8mol % yttria stabilized zirconia. The potential of the proton conducting materials for application in ammonia synthesis at atmospheric pressure was also studied. They demonstrated promising results and could prove to be an alternative to the common ammonia synthesis processes.
596

Low platinum electrodes for proton exchange fuel cells manufactures by reactive spray deposition technology

Roller, Justin 05 1900 (has links)
Reactive spray deposition technology (RSDT) is a method of depositing films or producing nanopowders through combustion of metal-organic compounds dissolved in a solvent. This technology produces powders of controllable size and quality by changing process parameters to control the stoichiometry of the final product. This results in a low-cost, continuous production method suitable for producing a wide range of fuel cell related catalyst films or powders. In this work, the system is modified for direct deposition of both unsupported and carbon supported layers on proton exchange membrane (PEM) fuel cells. The cell performance is investigated for platinum loadings of less than 0.15 mg/cm² using a heterogeneous bi-layer consisting of a layer of unsupported platinum followed by a composite layer of Nafion®, carbon and platinum. Comparison to more traditional composite cathode architectures is made at loadings of 0.12 and 0.05 mg platinum/cm². The composition and phase of the platinum catalyst is confirmed by XPS and XRD analysis while the particle size is analyzed by TEM microscopy. Cell voltages of 0.60 V at 1 A/cm² using H₂/O₂ at a loading of 0.053 mg platinum/cm² have been achieved. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
597

Étude de systèmes pile à combustible hybridés embarqués pour l'aéronautique / Study of Airborne Hybridized Fuel Cell Systems for Aeronautics

Hordé, Théophile 30 November 2012 (has links)
Le domaine du transport aérien est en plein effort de réduction de ses émissions de gaz à effet de serre. Les PEMFC sont sérieusement envisagées afin d'introduire d'avantage d'énergie électrique à bord des avions. On se propose d'étudier la faisabilité de la propulsion d'avions légers alimentés par des systèmes pile à combustible hybridés. On étudie plus spécifiquement un système hybride PEMFC / Batteries Li-Ion produisant un total de 40 kW (20 kW PàC + 20 kW Li-Ion) permettant de propulser un avion léger biplace. Le premier aspect de cette étude est la navigabilité des PEMFC, c'est à dire leur aptitude à fonctionner en milieu aérien. Le second aspect est l'architecture électrique du système hybride, son dimensionnement et son comportement lors de différents profils de vol. Des essais expérimentaux en altitude sont menés et permettent de quantifier la diminution des performances de PàC aérobies liée à la diminution de pression ambiante. Grâce à ces essais et à un modèle numérique de PàC, on compare les technologies aérobies et anaérobies pour différents profils de vol. Un bilan des masses et des volumes associé à chacune de ces deux technologies est dressé. Par ailleurs, des essais en inclinaisons de systèmes PEMFC sont réalisés. L'hybridation directe de PEMFC avec des batteries Lithium est étudiée numériquement et expérimentalement. Un modèle Matlab Simulink de PàC et de batteries Lithium est développé afin de prédire le comportement du système hybride direct et de le dimensionner. Enfin, un banc expérimental d'hybridation directe est réalisé et des essais sont menés, révélant l'intérêt de cette architecture innovante. / The domain of air transport is working at reducing its emissions of greenhouse gases. PEMFC are seriously considered as electrical source for future aircraft. The present study focusses on the feasibility of propulsion of a light aircraft powered by hybridized PEMFC systems. The hybrid PEMFC / Li-Ion batteries system studied here produces 40 kW (20 kW PEMFC + 20 kW Li-Ion) and should be able to power a two-seat light aircraft. The first part of the study is dedicated to PEMFC airworthiness, meaning their capacity to work properly in aeronautical conditions. The second part is dedicated to the hybrid system electrical architecture, its dimensioning and its response to various flight profiles. Aerobic PEMFC performance loss due to drop in ambient pressure is quantified thanks to experiments at various altitude. Thanks to these measurements and to a numerical model, aerobic and anaerobic PEMFC are compared according to various flight profiles. A mass and volume balance of each technology is drawn up. In addition, inclination tests of PEMFC systems are performed. Direct hybridization of PEMFC and Li-Ion batteries is studied numerically and experimentally. A Matlab Simulink model of PEMFC and battery is developed in order to forecast the hybrid system's response and to size it. Finally, an experimental bench is settled up and tests are led, proving the interest of such an innovative architecture.
598

Contrôle d’une source d’énergie hybride : Pile à combustible-Supercondensateur / control of a hybrid energy source based on fuel cell unit coupled to supercapacitors

Sandoval torres, Cinda Luz 16 December 2016 (has links)
Cette thèse s’inscrit dans le cadre de conception d’une stratégie de gestion de l’énergie dans un système hybride de génération d'énergie électrique composé d’une pile à combustible (PC) et un module de supercondensateurs (SC). La source hybride fournit une puissance maximale de 1,2 kW et sa conception implique des décisions concernant la sélection de l’architecture du système hybride ainsi que le choix de la topologie et le dimensionnement d’une unité de convertisseurs. La stratégie de gestion vise à satisfaire la demande d’énergie électrique de la charge et favoriser la consommation énergétique efficiente ; sa performance est évaluée en développant un simulateur qui comprend la dynamique des éléments mis en jeu : deux sources et l’unité de convertisseurs. Le générateur hybride est supposé alimenter un profil de consommation correspondant à un véhicule électrique, de ce fait un cycle standard de conduite en ville en échelle est demandé lors des simulations, ce qui permet d’évaluer la performance du générateur hybride et plus spécifiquement de la stratégie de gestion énergétique.Dans une première étape de cette thèse, un simulateur intégral a été construit avec des librairies de Simscape. Le simulateur est constitué des blocs de différents domaines, contenant des modèles fondamentaux des composants du système. Le block de pile à combustible modèle la dynamique d’un système BAHIA® (400 W - 1100 W, 0 A - 70 A nominale) et le block de supercondensateur modèle les cycles charge-décharge d’un module Maxwell de 400 F et 16 V. Un onduleur de tension pont complet avec convertisseur élévateur conditionne l’énergie délivrée par la pile à combustible et un convertisseur bidirectionnel (buck-boost) est connecté au module de supercondensateurs afin de conditionner les cycles de charge-décharge. L’unité des convertisseurs a été dimensionné, puis, un modèle moyen de petits signaux a été formulé afin de décrire la dynamique de ces dispositifs. Les différents composants ont été intégrés dans l’environnement Simulink. Dans une deuxième étape, la stratégie de gestion énergétique a été conçue en considérant les caractéristiques et performances des sources ; le résultat est une stratégie de trois niveaux hiérarchiques, dont l’aspect principal es la définition des lois de commande locales et globale. Dans une troisième étape, le système complet est évalué en termes du niveau d’utilisation des sources, du domaine d’opération de la pile à combustible, et de l’accomplissement des objectifs des commandes locales et global, qui engagent notamment le SOC des supercondensateurs et la régulation de la tension du générateur hybride. / Energy generation from fossil fuels combustion is predicted to have severe future impacts in the world’s economy and ecology. Fuel cells and supercapacitors are an alternative power source, environmentally friendly.This dissertation presents a regulation architecture developed to coordinate a hybrid renewable source for typical solicitations of electric vehicles in a scaled operating range of 1 kW. The hybrid system is composed of a Polymer Electrolyte Membrane (PEM) fuel cell module, a supercapacitors bank and their respective power conditioning units. In order to optimize the overall operation, the proposed strategy is organized into three hierarchical levels, and the power demand for each energy source is determined in real time with a basis on a frequency distribution and a cutoff frequency, defined in accordance with the dynamical capabilities of the sources.Even if numerous researches have been reported on the subject, few studies have taken into account the proper dynamics of each source in order to optimize the global performance of the hybrid power supply.The goal of this work is to implement a complete simulator integrating not only dynamical models of each energy source, but also dynamical models of the power conditioning units. The control strategy consists of nested loops, arranged in three functional levels of hierarchy. The central idea is to find the optimal set point for each energy source, according to their own physical properties. Contrary to the existing control strategies, this strategy dynamically calculates the appropriate power demand for each energy source. Due to the complexity of the system, cascade control loops are proposed, organized into blocks, according to the system functionality and dynamics.A functional simulation is obtained, where the system ensures the adequate supercapacitor state of charge and soft current demands to keep the fuel cell working in its safe operating region. Thus, lower fuel consumption and rapid response to load demands are guaranteed to improve efficiency.Results demonstrate that the control strategy allows the regulation of the DC bus voltage under UDDS and ECE-15 driving cycles as load profiles. The fuel cell works within its maximum efficiency region, without falling in the degradation zone. In addition, the supercapacitor state of charge remains within the recommended range.
599

Fuel cell layout for a heavy duty vehicle

Nguyen, Henrik, Lindström, Sophie January 2018 (has links)
No description available.
600

Studium 3-fázových katalytických vrstev pro polymerní palivové články a elektrolyzéry / Study of 3-phase catalytic layers for polymer electrolyte fuel cells and electrolysers

Fuka, Šimon January 2017 (has links)
Title: Study of 3-phase catalytic layers for polymer electrolyte fuel cells and electrolysers Author: Šimon Fuka Department: Department of Surface and Plasma Science Supervisor: doc. Mgr. Iva Matolínová, Dr., Department of Surface and Plasma Science Abstract: The diploma thesis focuses on the study of catalytic layers for Proton Exchange Membrane Fuel Cells (PEMFC) or electrolyzers based on the mixture of platinum and cerium oxide. These layers are prepared by using magnetron sputtering, their properties are studied depending on the deposition parameters or the choice of the substrate by using SEM, AFM, XPS and then tested as an anode in the fuel cell. In addition to the morphology of the catalytic layers, it has been shown that the dispersion of very small nanoparticles of the catalyst with a size of 1-2 nm has a great effect on PEMFC performance. Most of the prepared samples gave maximal and maximal specific performance much higher than the state of art values published for Pt-CeOx system. By studying properties of the layers used as the anode catalysts, this work contributes to the understanding of PEMFC fuel cell behavior and, consequently, to its potential commercialization. Keywords: Fuel cell, cerium oxide, platinum, catalyst, magnetron sputtering

Page generated in 0.0559 seconds