Spelling suggestions: "subject:"fullwave"" "subject:"fullwave""
1 |
A fast full-wave solver for the analysis of large planar finite periodic antenna arrays in grounded multilayered mediaMahachoklertwattana, Pongsak 14 September 2007 (has links)
No description available.
|
2 |
Electromagnetic full wave modal analysis of frequency-dependent underground cablesHabib, Md. Shahnoor 01 June 2011 (has links)
In this thesis, a new method has been proposed for calculating the frequencydependent parameters of underground cables. The method uses full wave formulation for calculating the modal electromagnetic fields and corresponding voltages and currents and then extracting frequency-dependent per unit length parameters of underground cables. The proposed method can be used for any cross-sectional shape of cables.
|
3 |
Electromagnetic full wave modal analysis of frequency-dependent underground cablesHabib, Md. Shahnoor 01 June 2011 (has links)
In this thesis, a new method has been proposed for calculating the frequencydependent parameters of underground cables. The method uses full wave formulation for calculating the modal electromagnetic fields and corresponding voltages and currents and then extracting frequency-dependent per unit length parameters of underground cables. The proposed method can be used for any cross-sectional shape of cables.
|
4 |
Décomposition de domaine pour la simulation Full-Wave dans un plasma froid / Domain decomposition for full-wave simulation in cold plasmaHattori, Takashi 25 June 2014 (has links)
De nos jours, les centrales nucléaires produisent de l'énergie par des réactions de fission (division d'un noyau atomique lourd en plusieurs noyaux atomiques légers et neutrons). Une alternative serait d'utiliser plutôt la réaction de fusion de noyaux légers de deutérium et de tritium, isotopes de l'hydrogène. Toutefois, cette technique reste encore du domaine de la recherche en physique des plasmas. Les expériences effectuées dans ce domaine ont révélé que les réacteurs à configuration magnétique toroïdale, dite tokamak, sont les plus efficaces. Un mélange gazeux d'isotopes de l'hydrogène appelé plasma est confiné grâce à un champ magnétique produit par des bobines. Ce plasma doit être chauffé à une température très élevée afin que les réactions de fusion aboutissent. De même, un courant intense doit être maintenu dans le plasma afin d'obtenir une configuration magnétique qui permet de le confiner. Une des méthodes les plus attrayantes parmi les techniques connues pour générer du courant est basée sur l'injection d'ondes électromagnétiques dans le plasma à la fréquence proche de la résonance hybride. Cette méthode offre la possibilité de contrôler le profil de densité dans le plasma. Une analyse de type Full-Wave permet alors de modéliser la propagation et l'absorption de l'onde hybride à partir des équations de Maxwell. Le but de cette thèse est de développer une méthode numérique pour cette simulation Full-Wave. Le chapitre 2 présente les équations de propagation d'ondes en mettant en évidence les caractères physiques du plasma. Une approche variationnelle de type mixte augmentée est développée et une analyse mathématique de cette dernière est effectuée dans le chapitre 3. Dans le contexte de la géométrie d'un tokamak, le problème Full-Wave dépendant de trois paramètres peut être réduit en une série de problèmes à deux variables à l'aide de la transformation de Fourier, ce sera l'objet du chapitre 4. Dans le chapitre 5, la formulation variationnelle obtenue à partir du problème mode par mode est discrétisée en utilisant des éléments finis nodaux de type Taylor-Hood. Le chapitre 6 concerne les méthodes de résolution du système linéaire après discrétisation. À l'aide de différents diagnostics physiques présentés dans le chapitre 7, des résultats de la simulation Full-Wave obtenues à partir d'un code MATLAB sont présentées dans le chapitre 8. Enfin, dans le but de développer une version parallèle de la simulation, le chapitre 9 est consacré à une méthode de décomposition de domaine sans recouvrement associé au système Full-Wave. / In order to generate current in tokamak, we look at plasma heating by electromagnetic waves at the lower hybrid (LH) frequency. For this type of description, one use a ray tracing code but we consider a full-wave one, where dielectric properties are local.Our aim is to develop a finite element numerical method for the full-wave modeling and to apply a domain decomposition method. In this thesis, we have developped a finite element method in a cross section of the tokamak for Maxwell equations solving the time harmonic electric field and a nonoverlapping domain decom- position method for the mixed augmented variational formulation by taking continuity accross the interfaces as constraints
|
5 |
Full-wave Surface Integral Equation Method for Electromagnetic-circuit Simulation of Three-dimensional Interconnects in Layered MediaKarsilayan, Nur 2010 May 1900 (has links)
A new full-wave surface impedance integral equation method is presented for
three-dimensional arbitrary-shaped interconnect parasitic extraction in layered media.
Various new ways of applying voltage and current excitations for electromagnetic-circuit
simulation are introduced. A new algorithm is proposed for matrix formation
of electromagnetic-circuit simulation, low frequency solution and layered media so
that it can be easily integrated to a Rao-Wilton-Glisson based method of moment
code. Two mixed potential integral equation forms of the electric field integral equation
are adapted along with the Michalski-Mosig formulations for layered kernels to
model electromagnetic interactions of interconnects in layered media over a conducting
substrate. The layered kernels are computed directly for controllable accuracy. The proposed methods are validated against existing methods for both electromagnetic and electromagnetic-circuit problems.
|
6 |
Time reversal and plane-wave decomposition in seismic interferometry, inversion and imagingTao, Yi, active 2012 09 July 2013 (has links)
This thesis concerns the study of time reversal and plane-wave decomposition
in various geophysical applications. Time reversal is a key step in seismic
interferometry, reverse time migration and full waveform inversion. The plane-wave
transform, also known as the tau-p transform or slant-stack, can separate waves based
on their ray parameters or their emergence angles at the surface.
I propose a new approach to retrieve virtual full-wave seismic responses from
crosscorrelating recorded seismic data in the plane-wave domain. Unlike a traditional
approach where the correlogram is obtained from crosscorrelating recorded data,
which contains the full range of ray parameters, this method directly chooses
common ray parameters to cancel overlapping ray paths. Thus, it can sometime avoid
spurious arrivals when the acquisition requirement of seismic interferometry is not
strictly met. I demonstrate the method with synthetic examples and an ocean bottom
seismometer data example. I show a multi-scale application of plane-wave based full
waveform inversion (FWI) with the aid of frequency domain forward modeling.
FWI uses the two-way wave-equation to produce high-resolution velocity models for
seismic imaging. This technique is implemented by an adjoint-state approach, which
viii
involves a time-reversal propagation of the residual wavefield at receivers, similar to
seismic interferometry. With a plane-wave transformed gather, we can decompose the
data by ray parameters and iteratively update the velocity model with selected ray
parameters. This encoding approach can significantly reduce the number of shots and
receivers required in gradient and Hessian calculations. Borrowing the idea of
minimizing different data residual norms in FWI, I study the effect of different
scaling methods to the receiver wavefield in the reverse time migration. I show that
this type of scaling is able to significantly suppress outliers compared to conventional
algorithms. I also show that scaling by its absolute norm generally produces better
results than other approaches. I propose a robust stochastic time-lapse seismic
inversion strategy with an application of monitoring Cranfield CO2 injection site. This
workflow involves two steps. The first step is the baseline inversion using a hybrid
starting model that combines a fractal prior and the low-frequency prior from well log
data. The second step is to use a double-difference inversion scheme to focus on the
local areas where time-lapse changes have occurred. Synthetic data and field data
show the effectiveness of this method. / text
|
7 |
Multiscale Seismic Inversion in the Data and Image DomainsZhang, Sanzong 12 1900 (has links)
I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from the actual one. The key idea is to develop a multiscale misfit function that is composed of both a simplified version of the data and one associated with the complex part of the data. Misfit functions based on simple data are characterized by many fewer local minima so that a gradient optimization method can make quick progress in getting to the general vicinity of the actual model. Once we are near the actual model, we then use the gradient based on the more complex data. Below, we describe two implementations of this multiscale strategy: wave equation traveltime inversion in the data domain and generalized differential semblance optimization in the image domain.
• Wave Equation Traveltime Inversion in the Data Domain (WT): The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we present a waveequation method that inverts the traveltimes of reflection events, and so is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function is a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag which maximizes the crosscorrelation amplitude represents the reflection-traveltime residual that is back-projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions are introduced to estimate the reflection-traveltime residual by semblance analysis and scanning. In theory, only the traveltime information is inverted and there is no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with both synthetic data and field records reveal both the benefits and limitations of WT.
• Generalized Differental Semblance Optimization in the Image Domain (GDSO): We now extend the multiscale physics approach to differential semblance optimization (DSO) in the image domain. That is, we identify the space-lag offset H(x, z, h) in the subsurface-offset domain as an implicit function of velocity. It describes the smoothly varying moveout H(x, z, h) of the migration image m(x, z, h) in the subsurface-offset domain, which is analogous to the smoothly varying traveltime residual ∆τ(x) of a reflection event in a shot gather. The velocity model is found that minimizes the objective function ∑x,z,h H(x, z, h)2m(x, z, h)2, where coherent noise is eliminated everywhere except along the picked curve H(x, z, h). This method is denoted as generalized DSO (GDSO) and mitigates the coherent noise problem with DSO. Numerical examples are presented that empirically demonstrate its effectiveness in providing more accurate velocity models compared to conventional DSO.
|
8 |
The Design of Passive Networks with Full-Wave Component ModelsValentino, Eric 27 June 2019 (has links)
In this thesis, the design of passive networks with the aid of full-wave simulation software and geometry-based models of lumped elements is investigated. This is done by examining the results of a number of simulation examples, as well as measured data from manufactured designs to compare against simulated equivalents. One such example is a chip antenna evaluation board design, in which the PCB, antenna, matching components and connector are all modeled. When measured, the simulation agreed with the board’s best matched frequency of 5.5 GHz to within 20 MHz. In another, a new antenna layout is generated from an existing evaluation design which, produced a match of about -15 dB at the design frequency with a similar bandwidth to that shown on the antenna datasheet on the first attempt at manufacture. Additionally, a statistical experiment was conducted in order to provide insight into the phenomenon of coupling between lumped components, and to define clearly when it starts to become an important effect to consider. For both chip capacitors and inductors, a behavioral model of how much crosstalk is present in a prospective circuit was developed which takes into account angle and distance between components, as well as case size. Finally, a simple discrete gradient descent was implemented in a commercial full-wave simulation software in order to assist in the refinement of designs containing 3-D geometry-defined component models.
|
9 |
Analysis And Design Of Miniaturized Rf Saw Duplexer PackageDong, Hao 01 January 2005 (has links)
This dissertation provides a comprehensive methodology for accurate analysis and design of miniaturized radio frequency (RF) surface acoustic wave (SAW) duplexer package. Full-wave analysis based on the three dimensional (3-D) finite element method (FEM) is successfully applied to model the package. The die model is obtained by combining the acoustics and die busbars parasitics models. The acoustics model is obtained using the coupling-of-models (COM) technique. The die busbars, bonding wires and printed circuit board (PCB) are modeled using full-wave analysis. After that, the models of package, die, and bonding wires are assembled together to get the total response. To take into account the mutual couplings, the methodology is extended to model the package, die busbars, and bonding wires together. The advantages and disadvantages of the methodology are also discussed. Based on the methodology, the Korea personal communication system (KPCS) duplexer is analyzed and designed. The isolation of KPCS duplexer package is significantly improved by redesigning inner ground plane, bonding wire scheme and ground via. A KPCS duplexer package is designed and excellent transmitter to receiver isolation in the transmission band is achieved. Simulation and measurement results are compared, and excellent agreement is found. Although we focus on investigating the methods to improve the isolation, the passband performance is also improved. The methodology is also successfully used for flip chip duplexer. The simulation results from our assembling method match the measurement results very well. Optimization method is applied to improve the transmit band isolation. With the new package and die design, the transmit band isolation can be improved from -53.6 dB to -65.2 dB. Based on the new package, the effect of the Rx ground trace on the isolation is investigated and the transmit band isolation can achieve -67.3 dB with the modification of the Rx ground trace. The technique developed in this dissertation reduces the design cycle time greatly and can be applied to various RF SAW device packages.
|
10 |
Stanovení mechanických parametrů horninového prostředí pomocí analýzy plného vlnového obrazu z akustické karotáže / Determination of mechanical parameters of rocks by analyzing full wave acoustic well logging recordChalupa, František January 2010 (has links)
In this diploma thesis is at first a revision of field used process of interpretation of full acoustic well logging record in WellCAD program. This program uses an algorithm based on velocity analysis which uses semblance principle. Furthermore an independent interpretation of same data has been done in MATLAB program. In this one, individual steps of the process are verified using analysis of complex seismic trace - in particular by using instantaneous frequency. Both processes of interpretation were applied on wide spectrum of Bohemian Massif rocks with very different mechanic properties, so their robustness has been tested. The results of both interpretation processes have been compared and there haven't been found any fundamental differences, just minor, which can't be systematically eliminated with regard to WellCAD's capabilities. Interpreted values of Poisson's ratio and velocities of longitudinal and transversal have been used for comparison. As the credibility of mechanic parameters' values determined by interpretation processes mentioned above has been proven, other reasons of difference between mechanic parameters' values determined seismically and using static methods were searched for. At first a comparison of basic aspects in which the measuring methods differ (e.g. sample size,...
|
Page generated in 0.0292 seconds