Spelling suggestions: "subject:"fundamentales test"" "subject:"fundamentale test""
1 |
Design of a next-generation modern Michelson-Morley experimentNagel, Moritz 18 March 2022 (has links)
Ein Fortschritt im Verständnis der Naturgesetzte wäre eine quantenphysikalische Beschreibung der Gravitation. Eine gültige Theorie der Quantengravitation (QG) existiert derzeit wegen des fehlenden experimentellen Zugangs des Planck-Skalen-Bereichs nicht. Dennoch können Experimente Hinweise für die Suche nach einer QG liefern. Die Standardmodellerweiterung (SME) bspw. beschreibt mögliche QG-induzierte beobachtbare niederenergetische Planck-Skalen-Effekte. Diesem Ansatz folgend wurde ein modernes Michelson-Morley-Experiment der nächsten Generation entwickelt, das es erstmalig erlaubt, simultan Obergrenzen für niederenergetische Planck-Skalen-Effekte in den Bewegungsgleichungen von Photonen und Fermionen zu bestimmen. Das zugrundeliegende theoretische Modell innerhalb der SME wurde neu betrachtet und Unstimmigkeiten korrigiert. Der Aufbau besteht aus ultra-stabilen kryogenen optischen Resonatoren (COREs) und Mikrowellenresonatoren, die gemeinsam im Raum rotieren. Die durch thermisches Rauschen limitierte vorhergesagte relative Frequenzinstabilität der entwickelten COREs liegt bei Temperaturen von flüssigem Helium im Bereich von 10^-17. Die Mikrowellenresonatoren können eine relative Frequenzinstabilität von 10^-16 erreichen. Um Störeinflüsse zu reduzieren, wurde zudem ein rauscharmer Niedrigtemperatur- sowie Drehtischaufbau konzipiert. Parallel wurde mit den Mikrowellenresonatoren ein einjähriges modernes Michelson-Morley-Experiment mit einer Sensitivität im Bereich von 10^-18 durchgeführt und erstmalig vollständig entkoppelte Obergrenzen für niederenergetische Planck-Skalen-Effekte im Bereich von 10^-17 bestimmt. Für den Aufbau der nächsten Generation lässt sich basierend auf der Frequenzinstabilität der COREs und der Mikrowellenresonatoren eine Sensitivität für niederenergetische Planck-Skalen-Effekte im Bereich von 10^-20 abschätzen. Zum ersten Mal kann somit der hypothetische Planck-unterdrückte-Bereich mit elektromagnetischen Resonatoren erkundet werden. / The next big leap in understanding the working principles of nature can be expected from a quantum physical description of gravity. None of the quantum gravity (QG) candidate theories can be verified, since observations at the Planck regime have currently been impossible. Still, experiments can help to give insights. For example, standard model extension (SME) describes potential observable low-energy remnant Planck scale effects. With this in mind, a design for a next-generation modern Michelson-Morley experiment has been developed that allows extracting upper bounds on potentially observable remnant Planck scale effects in the equations of motion of photons and fermions simultaneously. The corresponding theoretical model within the framework of the SME has been revisited and discrepancies have been corrected. The experimental setup consists of co-rotating ultra-stable cryogenic optical resonators (COREs) and ultra-stable sapphire loaded cryogenic microwave whispering-gallery resonators. The developed COREs have a theoretical thermal noise limited fractional frequency instability on the order of 10^-17 at liquid helium temperatures. The cryogenic microwave resonators allow in principle a performance on the order of 10^-16. For noise reduction, a suitable low noise cryogenic as well as turntable system has been designed. In parallel, a one-year modern Michelson-Morley measurement campaign with a sensitivity on the order of 10^-18 was carried out using the cryogenic microwave resonators. The experiment has allowed to set new stringent disentangled upper bounds on remnant Planck scale effects on the order of 10^-17. With the frequency performance of the COREs and cryogenic microwave resonators of the next-generation experimental setup, a sensitivity for remnant Planck scale effects on the order of 10^-20 can be estimated. Thus, the designed setup has the potential to explore the hypothetical Planck suppressed regime using electromagnetic resonators for the first time.
|
Page generated in 0.0652 seconds